Lung sound classification based on Hilbert-Huang transform features and multilayer perceptron network

Yunxia Liu, Yang Yang, Yuehui Chen
{"title":"Lung sound classification based on Hilbert-Huang transform features and multilayer perceptron network","authors":"Yunxia Liu, Yang Yang, Yuehui Chen","doi":"10.1109/APSIPA.2017.8282137","DOIUrl":null,"url":null,"abstract":"Accurate classification of lung sounds plays an important role in noninvasive diagnosis of pulmonary diseases. A novel lung sound classification algorithm based on Hilbert-Huang transform (HHT) features and multilayer perceptron network is proposed in this paper. Three types of HHT domain features, namely the instantaneous envelope amplitude of intrinsic mode functions (IMF), envelop of instantaneous amplitude of the first four layers IMFs, and max value of the marginal spectrum are proposed for jointly characterization of the time-frequency properties of lung sounds. These proposed features are feed into a multi-layer perceptron neural network for training and testing of lung sound signal classification. Abundant experimental work is carried out to verify the effectiveness of the proposed algorithm.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Accurate classification of lung sounds plays an important role in noninvasive diagnosis of pulmonary diseases. A novel lung sound classification algorithm based on Hilbert-Huang transform (HHT) features and multilayer perceptron network is proposed in this paper. Three types of HHT domain features, namely the instantaneous envelope amplitude of intrinsic mode functions (IMF), envelop of instantaneous amplitude of the first four layers IMFs, and max value of the marginal spectrum are proposed for jointly characterization of the time-frequency properties of lung sounds. These proposed features are feed into a multi-layer perceptron neural network for training and testing of lung sound signal classification. Abundant experimental work is carried out to verify the effectiveness of the proposed algorithm.
基于Hilbert-Huang变换特征和多层感知器网络的肺声分类
肺音的准确分类对肺部疾病的无创诊断具有重要意义。提出了一种基于Hilbert-Huang变换(HHT)特征和多层感知器网络的肺音分类算法。提出了三种HHT域特征,即本征模态函数(IMF)的瞬时包络幅值、前四层IMF的瞬时幅值包络和边缘谱的最大值,共同表征肺音的时频特性。这些特征被输入到多层感知器神经网络中,用于肺声信号分类的训练和测试。大量的实验工作验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信