A linear recursive bad data identification method with real-time application to power system state estimation

Boming Zhang, S. Y. Wang, N. Xiang
{"title":"A linear recursive bad data identification method with real-time application to power system state estimation","authors":"Boming Zhang, S. Y. Wang, N. Xiang","doi":"10.1109/PICA.1991.160609","DOIUrl":null,"url":null,"abstract":"The recursive measurement error estimation identification (RMEEI) method for bad data (BD) analysis is described. By using a set of linear recursive formulae, state variables, residuals, and their variances are updated after the removal of a measurement from suspected data set to the remaining data set (or in the reverse direction). Neither a reestimation nor residual sensitivity matrix is needed in the identification process, which increases the computational speed greatly. Digital tests have been done to compare the RMEEI method with other conventional BD identification method in identification performance and computational speed. The real-time operation experience of the RMEEI method in energy management system (EMS) of the North East China power system control center is given.<<ETX>>","PeriodicalId":287152,"journal":{"name":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Conference Papers 1991 Power Industry Computer Application Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICA.1991.160609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

The recursive measurement error estimation identification (RMEEI) method for bad data (BD) analysis is described. By using a set of linear recursive formulae, state variables, residuals, and their variances are updated after the removal of a measurement from suspected data set to the remaining data set (or in the reverse direction). Neither a reestimation nor residual sensitivity matrix is needed in the identification process, which increases the computational speed greatly. Digital tests have been done to compare the RMEEI method with other conventional BD identification method in identification performance and computational speed. The real-time operation experience of the RMEEI method in energy management system (EMS) of the North East China power system control center is given.<>
一种实时应用于电力系统状态估计的线性递归坏数据辨识方法
介绍了一种用于坏数据分析的递归测量误差估计识别方法。通过使用一组线性递归公式,在将一个测量值从可疑数据集移到剩余数据集(或相反方向)后,更新状态变量、残差及其方差。在辨识过程中不需要重估计,也不需要残差灵敏度矩阵,大大提高了计算速度。通过数字测试,将RMEEI方法与其他传统的BD识别方法在识别性能和计算速度上进行了比较。给出了RMEEI方法在东北电力系统控制中心能源管理系统(EMS)中的实时运行经验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信