Machine Learning Aided NR-V2X Quality of Service Predictions

Aslihan Reyhanoglu, Emrah Kar, Feyzi Ege Kumec, Yahya Sukur Can Kara, Sercan Karaagac, B. Turan, S. Coleri
{"title":"Machine Learning Aided NR-V2X Quality of Service Predictions","authors":"Aslihan Reyhanoglu, Emrah Kar, Feyzi Ege Kumec, Yahya Sukur Can Kara, Sercan Karaagac, B. Turan, S. Coleri","doi":"10.1109/VNC57357.2023.10136346","DOIUrl":null,"url":null,"abstract":"Vehicle-to-Everything Communication (V2X) technologies aim to meet strict quality-of-service (QoS) requirements of vehicular connectivity applications such as safety message exchange, remote driving, and sensor data sharing. The high reliability requirement is particularly important to enable safety relevant applications. Thus, predicting QoS levels becomes key to ensure the reliability of the connected vehicle applications. Recently, machine learning (ML) algorithms are demonstrated to provide dependable predictions to plan, simulate, and evaluate the performance of vehicular networks. In this paper, we propose ML aided New Radio (NR)-V2X QoS predictions scheme to provide Packet Delivery Ratio (PDR) and throughput predictions with the input of Modulation and Coding Schemes (MCS), distance-to-base station, Signal to Interference plus Noise Ratio (SINR), and packet size. Seven different ML algorithms based prediction models are trained and evaluated by using NR-V2X simulation data. We provide performance comparisons between Support Vector Regression (SVR), Deep Neural Network (DNN), Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light GBM (LGBM) for predicting throughput and PDR. We demonstrate that CatBoost and RF are the best performing algorithms to predict throughput and PDR of NR-V2X networks, respectively.","PeriodicalId":185840,"journal":{"name":"2023 IEEE Vehicular Networking Conference (VNC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC57357.2023.10136346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle-to-Everything Communication (V2X) technologies aim to meet strict quality-of-service (QoS) requirements of vehicular connectivity applications such as safety message exchange, remote driving, and sensor data sharing. The high reliability requirement is particularly important to enable safety relevant applications. Thus, predicting QoS levels becomes key to ensure the reliability of the connected vehicle applications. Recently, machine learning (ML) algorithms are demonstrated to provide dependable predictions to plan, simulate, and evaluate the performance of vehicular networks. In this paper, we propose ML aided New Radio (NR)-V2X QoS predictions scheme to provide Packet Delivery Ratio (PDR) and throughput predictions with the input of Modulation and Coding Schemes (MCS), distance-to-base station, Signal to Interference plus Noise Ratio (SINR), and packet size. Seven different ML algorithms based prediction models are trained and evaluated by using NR-V2X simulation data. We provide performance comparisons between Support Vector Regression (SVR), Deep Neural Network (DNN), Random Forest (RF), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Light GBM (LGBM) for predicting throughput and PDR. We demonstrate that CatBoost and RF are the best performing algorithms to predict throughput and PDR of NR-V2X networks, respectively.
机器学习辅助NR-V2X服务质量预测
V2X (Vehicle-to-Everything Communication)技术旨在满足安全信息交换、远程驾驶、传感器数据共享等车辆连接应用对服务质量(QoS)的严格要求。高可靠性要求对于实现安全相关应用尤为重要。因此,预测QoS水平成为确保车联网应用可靠性的关键。最近,机器学习(ML)算法被证明可以为规划、模拟和评估车辆网络的性能提供可靠的预测。在本文中,我们提出了ML辅助的新无线电(NR)-V2X QoS预测方案,以调制和编码方案(MCS)、基站距离、信噪比(SINR)和分组大小为输入,提供分组传输比(PDR)和吞吐量预测。通过使用NR-V2X仿真数据,对七种不同的基于ML算法的预测模型进行了训练和评估。我们提供了支持向量回归(SVR)、深度神经网络(DNN)、随机森林(RF)、梯度增强机(GBM)、极端梯度增强(XGBoost)、分类增强(CatBoost)和轻型GBM (LGBM)在预测吞吐量和PDR方面的性能比较。我们证明CatBoost和RF分别是预测NR-V2X网络吞吐量和PDR的最佳算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信