{"title":"Fuzzy logic based force-feedback for obstacle collision avoidance of robot manipulators","authors":"Dumidu Wijayasekara, M. Manic","doi":"10.1109/HSI.2014.6860452","DOIUrl":null,"url":null,"abstract":"Robot remote teleoperation enables users to perform complex tasks in hostile or inaccessible environments, without physical presence. However, minimizing collisions with obstacles while maintaining accuracy and speed of task is important. While visual and auditory inputs to the user aid in accurate control, to achieve the required speed and accuracy, tactile and kinesthetic force-feedback information can be used. This paper presents a dynamic real-time fuzzy logic based force-feedback control for obstacle avoidance in a remotely operated robot manipulator. The presented method utilizes absolute position of the robot manipulator to calculate the distance vector to known obstacles. A fuzzy controller utilizes the distance vectors and the velocities of the components in the manipulator to generate force feedback in each axis. Furthermore, the paper presents an interactive graphical user interface that enables users to add or remove obstacles in the environment dynamically. The presented method was implemented on a simple 3-DOF robot manipulator. The presented method was compared to a situation without force feedback. Test results show significantly improved speed and consistency in completing a task when the presented force feedback method is used.","PeriodicalId":448379,"journal":{"name":"2014 7th International Conference on Human System Interactions (HSI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Conference on Human System Interactions (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2014.6860452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Robot remote teleoperation enables users to perform complex tasks in hostile or inaccessible environments, without physical presence. However, minimizing collisions with obstacles while maintaining accuracy and speed of task is important. While visual and auditory inputs to the user aid in accurate control, to achieve the required speed and accuracy, tactile and kinesthetic force-feedback information can be used. This paper presents a dynamic real-time fuzzy logic based force-feedback control for obstacle avoidance in a remotely operated robot manipulator. The presented method utilizes absolute position of the robot manipulator to calculate the distance vector to known obstacles. A fuzzy controller utilizes the distance vectors and the velocities of the components in the manipulator to generate force feedback in each axis. Furthermore, the paper presents an interactive graphical user interface that enables users to add or remove obstacles in the environment dynamically. The presented method was implemented on a simple 3-DOF robot manipulator. The presented method was compared to a situation without force feedback. Test results show significantly improved speed and consistency in completing a task when the presented force feedback method is used.