Johannes Fett, A. Ungethüm, Dirk Habich, Wolfgang Lehner
{"title":"The Case for SIMDified Analytical Query Processing on GPUs","authors":"Johannes Fett, A. Ungethüm, Dirk Habich, Wolfgang Lehner","doi":"10.1145/3465998.3466015","DOIUrl":null,"url":null,"abstract":"Data-level parallelism (DLP) is a heavily used hardware-driven parallelization technique to optimize the analytical query processing, especially in in-memory column stores. This kind of parallelism is characterized by executing essentially the same operation on different data elements simultaneously. Besides Single Instruction Multiple Data (SIMD) extensions on common x86-processors, GPUs also provide DLP but with a different execution model called Single Instruction Multiple Threads (SIMT), where multiple scalar threads are executed in a SIMD manner. Unfortunately, a complete GPU-specific implementation of all query operators has to be set up, since the state of the vectorized implementations cannot be ported from x86-processors to GPUs right now. To avoid this implementation effort, we present our vision to virtualize GPUs as virtual vector engines with software-defined SIMD instructions and to specialize hardware-oblivious vectorized operators to GPUs using our Template Vector Library (TVL) in this paper.","PeriodicalId":183683,"journal":{"name":"Proceedings of the 17th International Workshop on Data Management on New Hardware","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465998.3466015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Data-level parallelism (DLP) is a heavily used hardware-driven parallelization technique to optimize the analytical query processing, especially in in-memory column stores. This kind of parallelism is characterized by executing essentially the same operation on different data elements simultaneously. Besides Single Instruction Multiple Data (SIMD) extensions on common x86-processors, GPUs also provide DLP but with a different execution model called Single Instruction Multiple Threads (SIMT), where multiple scalar threads are executed in a SIMD manner. Unfortunately, a complete GPU-specific implementation of all query operators has to be set up, since the state of the vectorized implementations cannot be ported from x86-processors to GPUs right now. To avoid this implementation effort, we present our vision to virtualize GPUs as virtual vector engines with software-defined SIMD instructions and to specialize hardware-oblivious vectorized operators to GPUs using our Template Vector Library (TVL) in this paper.