Time feature selection for identifying active household members

P. Campos, Alejandro Bellogín, F. Díez, Iván Cantador
{"title":"Time feature selection for identifying active household members","authors":"P. Campos, Alejandro Bellogín, F. Díez, Iván Cantador","doi":"10.1145/2396761.2398628","DOIUrl":null,"url":null,"abstract":"Popular online rental services such as Netflix and MoviePilot often manage household accounts. A household account is usually shared by various users who live in the same house, but in general does not provide a mechanism by which current active users are identified, and thus leads to considerable difficulties for making effective personalized recommendations. The identification of the active household members, defined as the discrimination of the users from a given household who are interacting with a system (e.g. an on-demand video service), is thus an interesting challenge for the recommender systems research community. In this paper, we formulate the above task as a classification problem, and address it by means of global and local feature selection methods and classifiers that only exploit time features from past item consumption records. The results obtained from a series of experiments on a real dataset show that some of the proposed methods are able to select relevant time features, which allow simple classifiers to accurately identify active members of household accounts.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Popular online rental services such as Netflix and MoviePilot often manage household accounts. A household account is usually shared by various users who live in the same house, but in general does not provide a mechanism by which current active users are identified, and thus leads to considerable difficulties for making effective personalized recommendations. The identification of the active household members, defined as the discrimination of the users from a given household who are interacting with a system (e.g. an on-demand video service), is thus an interesting challenge for the recommender systems research community. In this paper, we formulate the above task as a classification problem, and address it by means of global and local feature selection methods and classifiers that only exploit time features from past item consumption records. The results obtained from a series of experiments on a real dataset show that some of the proposed methods are able to select relevant time features, which allow simple classifiers to accurately identify active members of household accounts.
识别活跃家庭成员的时间特征选择
Netflix和MoviePilot等流行的在线租赁服务通常管理家庭账户。一个家庭帐户通常是由住在同一栋房子里的不同用户共享的,但通常不提供识别当前活跃用户的机制,因此在做出有效的个性化推荐方面存在相当大的困难。因此,活跃家庭成员的识别,定义为对与系统(例如,点播视频服务)交互的给定家庭用户的歧视,是推荐系统研究社区面临的一个有趣挑战。在本文中,我们将上述任务表述为一个分类问题,并通过全局和局部特征选择方法以及仅利用过去物品消费记录中的时间特征的分类器来解决它。在真实数据集上的一系列实验结果表明,所提出的一些方法能够选择相关的时间特征,从而使简单的分类器能够准确地识别家庭账户的活跃成员。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信