A Simpler Adaptive Neural Network Tracking Control of Robot Manipulators by Output Feedback

Qiong Liu, S. Ge, Yan Li, Mingye Yang, Hao Xu, K. Tee
{"title":"A Simpler Adaptive Neural Network Tracking Control of Robot Manipulators by Output Feedback","authors":"Qiong Liu, S. Ge, Yan Li, Mingye Yang, Hao Xu, K. Tee","doi":"10.1109/ICCAR49639.2020.9108064","DOIUrl":null,"url":null,"abstract":"The trajectory tracking problem of a class of robot manipulators is investigated by a simpler design adaptive neural network(NN) in this paper. The Radial Basis Function(RBF) NN is utilized to handle the uncertainties of the dynamics. Compared with the traditional schemes, the dimension of the input vectors of RBFNN is decrease from $4n$ to $3n$ but it have equal tracking and approximation performances. The output feedback control is considered when the velocity information cannot be obtained. Moreover, the weights of RBFNN converge to its optimal value by using the auxiliary filter to estimate weights error. The robot manipulator system is semi-globally and uniformly bounded which is proved by Lyapunov's theory. Simulation results demonstrate that the simpler controller has the same capability compared with the non-simplified method.","PeriodicalId":412255,"journal":{"name":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","volume":"85 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th International Conference on Control, Automation and Robotics (ICCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAR49639.2020.9108064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The trajectory tracking problem of a class of robot manipulators is investigated by a simpler design adaptive neural network(NN) in this paper. The Radial Basis Function(RBF) NN is utilized to handle the uncertainties of the dynamics. Compared with the traditional schemes, the dimension of the input vectors of RBFNN is decrease from $4n$ to $3n$ but it have equal tracking and approximation performances. The output feedback control is considered when the velocity information cannot be obtained. Moreover, the weights of RBFNN converge to its optimal value by using the auxiliary filter to estimate weights error. The robot manipulator system is semi-globally and uniformly bounded which is proved by Lyapunov's theory. Simulation results demonstrate that the simpler controller has the same capability compared with the non-simplified method.
基于输出反馈的简单自适应神经网络机器人跟踪控制
本文采用一种设计简单的自适应神经网络(NN)研究了一类机器人的轨迹跟踪问题。利用径向基函数(RBF)神经网络处理动力学的不确定性。与传统方案相比,RBFNN的输入向量维数从$4n$降低到$3n$,但具有相同的跟踪和逼近性能。在速度信息无法获取的情况下,考虑输出反馈控制。利用辅助滤波器估计权值误差,使RBFNN的权值收敛到最优值。用李亚普诺夫理论证明了机器人操纵系统是半全局一致有界的。仿真结果表明,与非简化方法相比,简化后的控制器具有相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信