Tracing Data through Learning with Watermarking

Alexandre Sablayrolles
{"title":"Tracing Data through Learning with Watermarking","authors":"Alexandre Sablayrolles","doi":"10.1145/3437880.3458442","DOIUrl":null,"url":null,"abstract":"How can we gauge the privacy provided by machine learning algorithms? Models trained with differential privacy (DP) provably limit information leakage, but the question remains open for non-DP models. In this talk, we present multiple techniques for membership inference, which estimates if a given data sample is in the training set of a model. In particular, we introduce a watermarking-based method that allows for a very fast verification of data usage in a model: this technique creates marks called radioactive that propagates from the data to the model during training. This watermark is barely visible to the naked eye and allows data tracing even when the radioactive data represents only 1% of the training set.","PeriodicalId":120300,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437880.3458442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

How can we gauge the privacy provided by machine learning algorithms? Models trained with differential privacy (DP) provably limit information leakage, but the question remains open for non-DP models. In this talk, we present multiple techniques for membership inference, which estimates if a given data sample is in the training set of a model. In particular, we introduce a watermarking-based method that allows for a very fast verification of data usage in a model: this technique creates marks called radioactive that propagates from the data to the model during training. This watermark is barely visible to the naked eye and allows data tracing even when the radioactive data represents only 1% of the training set.
通过水印学习跟踪数据
我们如何衡量机器学习算法提供的隐私?使用差分隐私(DP)训练的模型可以证明限制了信息泄漏,但对于非差分隐私(DP)模型,问题仍然是开放的。在这次演讲中,我们介绍了多种隶属度推断技术,它估计给定的数据样本是否在模型的训练集中。特别是,我们引入了一种基于水印的方法,该方法允许非常快速地验证模型中的数据使用情况:该技术创建称为放射性的标记,该标记在训练期间从数据传播到模型。这个水印几乎是肉眼可见的,即使放射性数据只占训练集的1%,也可以进行数据跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信