On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets

Julian D'Costa, Engel Lefaucheux, E. Neumann, J. Ouaknine, J. Worrell
{"title":"On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets","authors":"Julian D'Costa, Engel Lefaucheux, E. Neumann, J. Ouaknine, J. Worrell","doi":"10.4230/LIPIcs.MFCS.2021.33","DOIUrl":null,"url":null,"abstract":"We study the computational complexity of the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets, or equivalently the Termination Problem for affine loops with compact semialgebraic guard sets. Consider the fragment of the theory of the reals consisting of negation-free $\\exists \\forall$-sentences without strict inequalities. We derive several equivalent characterisations of the associated complexity class which demonstrate its robustness and illustrate its expressive power. We show that the Compact Escape Problem is complete for this class.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.MFCS.2021.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We study the computational complexity of the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets, or equivalently the Termination Problem for affine loops with compact semialgebraic guard sets. Consider the fragment of the theory of the reals consisting of negation-free $\exists \forall$-sentences without strict inequalities. We derive several equivalent characterisations of the associated complexity class which demonstrate its robustness and illustrate its expressive power. We show that the Compact Escape Problem is complete for this class.
紧半代数集上线性动力系统逃逸问题的复杂性
研究了紧半代数集上离散线性动力系统的逃逸问题,即具有紧半代数保护集的仿射环的终止问题的计算复杂度。考虑一下由没有严格不等式的无否定的$\exists \forall$句子组成的实数理论片段。我们推导了关联复杂性类的几个等价特征,证明了它的鲁棒性和表达能力。我们证明这个类的紧凑逸出问题是完备的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信