{"title":"Nonparametric Functional Approximation with Delaunay Triangulation Learner","authors":"Yehong Liu, G. Yin","doi":"10.1109/ICBK.2019.00030","DOIUrl":null,"url":null,"abstract":"We propose a differentiable nonparametric algorithm, the Delaunay triangulation learner (DTL), to solve the functional approximation problem on the basis of a p-dimensional feature space. By conducting the Delaunay triangulation algorithm on the data points, the DTL partitions the feature space into a series of p-dimensional simplices in a geometrically optimal way, and fits a linear model within each simplex. We study its theoretical properties by exploring the geometric properties of the Delaunay triangulation, and compare its performance with other statistical learners in numerical studies.","PeriodicalId":383917,"journal":{"name":"2019 IEEE International Conference on Big Knowledge (ICBK)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2019.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We propose a differentiable nonparametric algorithm, the Delaunay triangulation learner (DTL), to solve the functional approximation problem on the basis of a p-dimensional feature space. By conducting the Delaunay triangulation algorithm on the data points, the DTL partitions the feature space into a series of p-dimensional simplices in a geometrically optimal way, and fits a linear model within each simplex. We study its theoretical properties by exploring the geometric properties of the Delaunay triangulation, and compare its performance with other statistical learners in numerical studies.