An evaluation of coarse grain dataflow code generation strategies

Wim Böhm, W. Najjar, Bhanu Shankar, L. Roh
{"title":"An evaluation of coarse grain dataflow code generation strategies","authors":"Wim Böhm, W. Najjar, Bhanu Shankar, L. Roh","doi":"10.1109/PMMP.1993.315554","DOIUrl":null,"url":null,"abstract":"Presents top-down and bottom-up methods for generating coarse grain dataflow or multithreaded code, and evaluates their effectiveness. The top-down technique generates clusters directly from the intermediate data dependence graph used for compiler optimizations. Bottom-up techniques coalesce fine-grain dataflow code into clusters. We measure the resulting number of clusters executed, cluster size, and number of inputs per cluster, for Livermore and Purdue benchmarks. The top-down method executes less clusters and instructions, but incurs a higher number of matches per cluster, which exemplifies the need for efficient matching of more than two inputs per cluster.","PeriodicalId":220365,"journal":{"name":"Proceedings of Workshop on Programming Models for Massively Parallel Computers","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshop on Programming Models for Massively Parallel Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMMP.1993.315554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Presents top-down and bottom-up methods for generating coarse grain dataflow or multithreaded code, and evaluates their effectiveness. The top-down technique generates clusters directly from the intermediate data dependence graph used for compiler optimizations. Bottom-up techniques coalesce fine-grain dataflow code into clusters. We measure the resulting number of clusters executed, cluster size, and number of inputs per cluster, for Livermore and Purdue benchmarks. The top-down method executes less clusters and instructions, but incurs a higher number of matches per cluster, which exemplifies the need for efficient matching of more than two inputs per cluster.
粗粒度数据流代码生成策略的评价
提出了自顶向下和自底向上生成粗粒度数据流或多线程代码的方法,并对其有效性进行了评价。自顶向下技术直接从用于编译器优化的中间数据依赖图生成集群。自底向上技术将细粒度数据流代码合并到集群中。对于Livermore和Purdue基准,我们测量了执行的集群数量、集群大小和每个集群的输入数量。自上而下的方法执行较少的集群和指令,但每个集群产生更多的匹配数量,这说明需要每个集群有效匹配两个以上的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信