BLOW UP RESULTS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AND SYSTEMS

A. Hakem, M. Berbiche
{"title":"BLOW UP RESULTS FOR FRACTIONAL DIFFERENTIAL EQUATIONS AND SYSTEMS","authors":"A. Hakem, M. Berbiche","doi":"10.2298/PIM1307173H","DOIUrl":null,"url":null,"abstract":"The aim of this research paper is to establish sufficient conditions for the nonexistence of global solutions for the following nonlinear fractional differential equation D �|t u + (−�) �/2 |u| m 1 u + a(x) � ∇|u| q 1 u = h(x,t)|u| p , (t,x) ∈ Q, u(0,x) = u0(x), x ∈ R N where (−�) �/2 , 0 < � < 2 is the fractional power of −�, and D �|t , (0 < � < 1) denotes the time-derivative of arbitrary � ∈ (0;1) in the sense of Caputo. The results are shown by the use of test function theory and extended to systems of the same type.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1307173H","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The aim of this research paper is to establish sufficient conditions for the nonexistence of global solutions for the following nonlinear fractional differential equation D �|t u + (−�) �/2 |u| m 1 u + a(x) � ∇|u| q 1 u = h(x,t)|u| p , (t,x) ∈ Q, u(0,x) = u0(x), x ∈ R N where (−�) �/2 , 0 < � < 2 is the fractional power of −�, and D �|t , (0 < � < 1) denotes the time-derivative of arbitrary � ∈ (0;1) in the sense of Caputo. The results are shown by the use of test function theory and extended to systems of the same type.
分数阶微分方程和系统的爆破结果
本研究论文的目的是建立全球解决方案的充分条件不存在下列非线性分数微分方程D�| t u +(−)��m / 2 u | | 1 u + (x)�∇| |你问1 u = h (x, t) | | p (t, x)∈q、u (0, x) =情况(x) x∈R N,(−)��/ 2,0 <�< 2的部分力量−�,和D�| t(0 <�< 1)表示对任意�∈(0,1)卡普托的感觉。利用测试函数理论证明了这些结果,并将其推广到同类型的系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信