Image annotation through gaming (TAG4FUN)

L. Seneviratne, E. Izquierdo
{"title":"Image annotation through gaming (TAG4FUN)","authors":"L. Seneviratne, E. Izquierdo","doi":"10.1109/ICDSP.2009.5201118","DOIUrl":null,"url":null,"abstract":"This paper introduces a new technique for image annotation in which social aspects of human-based computation are exploited. The proposed approach aims at exploiting what millions of single, online and cooperative gamers are keen to do, (in some cases gaming enthusiasts) to tackle the challenging image annotation task. The proposed approach deviates from the conventional “content-based image retrieval (CBIR)” paradigm, favored by the research community to tackle problems related to semantic annotation and tagging of multimedia content. The proposed approach focuses on social aspects of gaming and the use of humans in a widely distributed fashion through a process of human-based computation. It aims at motivating people towards image tagging while entertaining themselves. Regarding key aspect of label accuracy, a combination of computer vision techniques, machine learning and game strategies have been used.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper introduces a new technique for image annotation in which social aspects of human-based computation are exploited. The proposed approach aims at exploiting what millions of single, online and cooperative gamers are keen to do, (in some cases gaming enthusiasts) to tackle the challenging image annotation task. The proposed approach deviates from the conventional “content-based image retrieval (CBIR)” paradigm, favored by the research community to tackle problems related to semantic annotation and tagging of multimedia content. The proposed approach focuses on social aspects of gaming and the use of humans in a widely distributed fashion through a process of human-based computation. It aims at motivating people towards image tagging while entertaining themselves. Regarding key aspect of label accuracy, a combination of computer vision techniques, machine learning and game strategies have been used.
通过游戏进行图像标注(TAG4FUN)
本文介绍了一种新的图像标注技术,该技术利用了基于人的计算的社会性。提出的方法旨在利用数百万单身、在线和合作玩家热衷于做的事情(在某些情况下是游戏爱好者)来解决具有挑战性的图像注释任务。提出的方法偏离了传统的“基于内容的图像检索(CBIR)”范式,该范式受到研究界的青睐,用于解决与多媒体内容的语义注释和标记相关的问题。所提出的方法侧重于游戏的社交方面,并通过基于人类的计算过程以广泛分布的方式使用人类。它的目的是在娱乐的同时激发人们对图像标签的兴趣。关于标签准确性的关键方面,结合了计算机视觉技术,机器学习和游戏策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信