Constrained simulated annealing with applications in nonlinear continuous constrained global optimization

B. Wah, Tao Wang
{"title":"Constrained simulated annealing with applications in nonlinear continuous constrained global optimization","authors":"B. Wah, Tao Wang","doi":"10.1109/TAI.1999.809827","DOIUrl":null,"url":null,"abstract":"This paper improves constrained simulated annealing (CSA), a discrete global minimization algorithm with asymptotic convergence to discrete constrained global minima with probability one. The algorithm is based on the necessary and sufficient conditions for discrete constrained local minima in the theory of discrete Lagrange multipliers. We extend CSA to solve nonlinear continuous constrained optimization problems whose variables take continuous values. We evaluate many heuristics, such as dynamic neighborhoods, gradual resolution of nonlinear equality constraints and reannealing, in order to greatly improve the efficiency of solving continuous problems. We report much better solutions than the best-known solutions in the literature on two sets of continuous optimization benchmarks.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

This paper improves constrained simulated annealing (CSA), a discrete global minimization algorithm with asymptotic convergence to discrete constrained global minima with probability one. The algorithm is based on the necessary and sufficient conditions for discrete constrained local minima in the theory of discrete Lagrange multipliers. We extend CSA to solve nonlinear continuous constrained optimization problems whose variables take continuous values. We evaluate many heuristics, such as dynamic neighborhoods, gradual resolution of nonlinear equality constraints and reannealing, in order to greatly improve the efficiency of solving continuous problems. We report much better solutions than the best-known solutions in the literature on two sets of continuous optimization benchmarks.
约束模拟退火在非线性连续约束全局优化中的应用
本文对约束模拟退火算法(CSA)进行了改进,CSA算法是一种离散全局最小值算法,它能渐近收敛到概率为1的离散约束全局最小值。该算法基于离散拉格朗日乘子理论中离散约束局部极小值的充要条件。将CSA推广到求解变量为连续值的非线性连续约束优化问题。为了提高求解连续问题的效率,我们评估了许多启发式方法,如动态邻域、非线性等式约束的逐步求解和再退火。在两组连续优化基准测试中,我们报告的解决方案比文献中最著名的解决方案要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信