An approximation-free prescribed performance controller for uncertain MIMO feedback linearizable systems

Achilles Theodorakopoulos, G. Rovithakis
{"title":"An approximation-free prescribed performance controller for uncertain MIMO feedback linearizable systems","authors":"Achilles Theodorakopoulos, G. Rovithakis","doi":"10.1109/ACC.2015.7171953","DOIUrl":null,"url":null,"abstract":"In this paper, a continuous, state-feedback controller achieving preselected bounds on the transient and steady-state performance of the output tracking errors is proposed, for a class of multi-input, multi-output, nonlinear systems. Contrary to the current state-of-the-art, however, the controller proposed herein is static, i.e., it does not require the implementation of adaptive laws, and further it does not incorporate neural networks or other approximating structures. In this respect, certain control design difficulties, including the selection of the neural network size or the vast amount of neural parameters, are effectively relaxed. Simulations are performed to verify and clarify the theoretical findings.","PeriodicalId":223665,"journal":{"name":"2015 American Control Conference (ACC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2015.7171953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a continuous, state-feedback controller achieving preselected bounds on the transient and steady-state performance of the output tracking errors is proposed, for a class of multi-input, multi-output, nonlinear systems. Contrary to the current state-of-the-art, however, the controller proposed herein is static, i.e., it does not require the implementation of adaptive laws, and further it does not incorporate neural networks or other approximating structures. In this respect, certain control design difficulties, including the selection of the neural network size or the vast amount of neural parameters, are effectively relaxed. Simulations are performed to verify and clarify the theoretical findings.
不确定MIMO反馈线性化系统的无逼近规定性能控制器
本文针对一类多输入多输出非线性系统,提出了一种连续状态反馈控制器,该控制器对输出跟踪误差的暂态和稳态性能具有预选界。然而,与目前的最新技术相反,本文提出的控制器是静态的,即,它不需要实现自适应律,而且它不包含神经网络或其他近似结构。在这方面,某些控制设计困难,包括神经网络大小或大量神经参数的选择,都得到了有效的缓解。通过仿真来验证和阐明理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信