J. Muñoz-Ferreras, Jing Wang, Zhengyu Peng, Changzhi Li, R. Gómez‐García
{"title":"FMCW-Radar-Based Vital-Sign Monitoring of Multiple Patients","authors":"J. Muñoz-Ferreras, Jing Wang, Zhengyu Peng, Changzhi Li, R. Gómez‐García","doi":"10.1109/IMBIOC.2019.8777845","DOIUrl":null,"url":null,"abstract":"Frequency-modulated continuous-wave (FMCW) radars have shown to be suitable for non-contact detection and monitoring of vital signs. Their coherent deramping-based architecture is beneficial in two aspects: i) it permits to attain high-resolution range profiles circumventing the necessity of expensive high-sampling-rate analog-to-digital converters and ii) its coherence feature enables a very-precise phase-based extraction of the range-displacement information. On the other hand, Doppler radars do not possess range resolution, leading to the fact that they can only detect the vital signs of a single patient with conventional baseband spectrum analysis. This work shows that FMCW radars can handle multiple patients located at different range cells. Simulations of vital-sign acquisitions confirm the isolation capabilities of FMCW radars in contrast to conventional Doppler radar systems.","PeriodicalId":171472,"journal":{"name":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMBIOC.2019.8777845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Frequency-modulated continuous-wave (FMCW) radars have shown to be suitable for non-contact detection and monitoring of vital signs. Their coherent deramping-based architecture is beneficial in two aspects: i) it permits to attain high-resolution range profiles circumventing the necessity of expensive high-sampling-rate analog-to-digital converters and ii) its coherence feature enables a very-precise phase-based extraction of the range-displacement information. On the other hand, Doppler radars do not possess range resolution, leading to the fact that they can only detect the vital signs of a single patient with conventional baseband spectrum analysis. This work shows that FMCW radars can handle multiple patients located at different range cells. Simulations of vital-sign acquisitions confirm the isolation capabilities of FMCW radars in contrast to conventional Doppler radar systems.