DenseNet Based Speech Imagery EEG Signal Classification using Gramian Angular Field

M. Islam, Md. Maruf Hossain Shuvo
{"title":"DenseNet Based Speech Imagery EEG Signal Classification using Gramian Angular Field","authors":"M. Islam, Md. Maruf Hossain Shuvo","doi":"10.1109/ICAEE48663.2019.8975572","DOIUrl":null,"url":null,"abstract":"One of the most challenging tasks in the Brain-Computer Interface (BCI) system is to classify the speech imagery electroencephalography (EEG) signals. In this work, we addressed the existing low classification accuracy problem with deep learning and improved beta band selection method. When the subject imagines, uttering a word rather saying it directly, there are changes in electrical stimulation in the brain. These electrical stimulations of the brain are recorded using EEG signal recording device. The recorded EEG data is then processed using the Dual-Tree Complex Wavelet Transform (DTCWT) for beta band selection which is responsible for activity related to imagery. To take advantage of Deep Convolutional Neural Networks (DCNN), we converted the time series EEG data into images. We generated images using two versions of Gramian Angular Field (GAF): Gramian Summation Angular Filed (GASF) and Gramian Difference Angular Field (GADF). Then these images were fed to DenseNet for image classification. DenseNet is an improved version of DCNN that minimizes the vanishing gradient problem. Between two different image generation techniques, GADF has the best average classification accuracy rate of 90.68 %. The dataset used in this study named ‘The KARA ONE Database’ is collected from Computational Linguistics Lab, University of Toronto, Canada.","PeriodicalId":138634,"journal":{"name":"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advances in Electrical Engineering (ICAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAEE48663.2019.8975572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

One of the most challenging tasks in the Brain-Computer Interface (BCI) system is to classify the speech imagery electroencephalography (EEG) signals. In this work, we addressed the existing low classification accuracy problem with deep learning and improved beta band selection method. When the subject imagines, uttering a word rather saying it directly, there are changes in electrical stimulation in the brain. These electrical stimulations of the brain are recorded using EEG signal recording device. The recorded EEG data is then processed using the Dual-Tree Complex Wavelet Transform (DTCWT) for beta band selection which is responsible for activity related to imagery. To take advantage of Deep Convolutional Neural Networks (DCNN), we converted the time series EEG data into images. We generated images using two versions of Gramian Angular Field (GAF): Gramian Summation Angular Filed (GASF) and Gramian Difference Angular Field (GADF). Then these images were fed to DenseNet for image classification. DenseNet is an improved version of DCNN that minimizes the vanishing gradient problem. Between two different image generation techniques, GADF has the best average classification accuracy rate of 90.68 %. The dataset used in this study named ‘The KARA ONE Database’ is collected from Computational Linguistics Lab, University of Toronto, Canada.
基于DenseNet的语素角场语音图像脑电信号分类
脑机接口(BCI)系统中最具挑战性的任务之一是语音图像脑电图(EEG)信号的分类。在这项工作中,我们利用深度学习和改进的β波段选择方法解决了现有的分类精度低的问题。当受试者想象说出一个词而不是直接说出来时,大脑中的电刺激就会发生变化。这些脑电刺激是用脑电图信号记录仪记录下来的。然后使用双树复小波变换(DTCWT)对记录的EEG数据进行β波段选择,该波段负责与图像相关的活动。利用深度卷积神经网络(Deep Convolutional Neural Networks, DCNN),将时间序列EEG数据转换成图像。我们使用两种版本的格拉曼角场(GAF)生成图像:格拉曼求和角场(GASF)和格拉曼差分角场(GADF)。然后将这些图像送入DenseNet进行图像分类。DenseNet是DCNN的改进版本,它最小化了梯度消失问题。在两种不同的图像生成技术中,GADF的平均分类准确率最高,达到90.68%。本研究使用的数据集名为“The KARA ONE Database”,来自加拿大多伦多大学计算语言学实验室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信