{"title":"Một thuật toán tối ưu bám quỹ đạo mục tiêu của bài toán quan sát đa mục tiêu trong trường hợp có mục tiêu bị che khuất","authors":"Nguyễn Thị Thu Hằng","doi":"10.32913/mic-ict-research-vn.v2019.n1.861","DOIUrl":null,"url":null,"abstract":"Trong thực tế quan sát quỹ đạo đa mục tiêu di động, có lúc hệ thống quan sát không thể nhận biết được mục tiêu, do các mục tiêu chuyển động quá gần nhau trong khi độ phân giải của hệ thống quan sát bị hạn chế, hoặc do một số mục tiêu bị che khuất bởi các mục tiêu khác vì một lý do quan trắc nào đó. Trường hợp này cũng thường xảy ra trong những môi trường có số lượng mục tiêu lớn (dày đặc) và mật độ nhiễu lớn. Các thuật toán bám mục tiêu, bám quỹ đạo hiện hành gặp khó khăn và thường mất bám, mất quỹ đạo bám. Trong bài báo này, chúng tôi trình bày một phương pháp liên kết dữ liệu và thuật toán bám quỹ đạo đệ quy từng bước theo thời gian quan sát với sự sử dụng tối đa dữ liệu lịch sử của quỹ đạo. Thuật toán khắc phục được tình trạng mất bám, mất quỹ đạo bám trong môi trường có mục tiêu bị che khuất. Thuật toán là sự kết hợp tư tưởng của phương pháp liên kết dữ liệu đa giả thiết và lọc Kalman mở rộng. Bài báo cũng chứng minh sự tồn tại của lời giải tối ưu từng bước và đưa ra thuật toán tìm lời giải \\epsilon-tối ưu.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"35 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Development on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32913/mic-ict-research-vn.v2019.n1.861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Trong thực tế quan sát quỹ đạo đa mục tiêu di động, có lúc hệ thống quan sát không thể nhận biết được mục tiêu, do các mục tiêu chuyển động quá gần nhau trong khi độ phân giải của hệ thống quan sát bị hạn chế, hoặc do một số mục tiêu bị che khuất bởi các mục tiêu khác vì một lý do quan trắc nào đó. Trường hợp này cũng thường xảy ra trong những môi trường có số lượng mục tiêu lớn (dày đặc) và mật độ nhiễu lớn. Các thuật toán bám mục tiêu, bám quỹ đạo hiện hành gặp khó khăn và thường mất bám, mất quỹ đạo bám. Trong bài báo này, chúng tôi trình bày một phương pháp liên kết dữ liệu và thuật toán bám quỹ đạo đệ quy từng bước theo thời gian quan sát với sự sử dụng tối đa dữ liệu lịch sử của quỹ đạo. Thuật toán khắc phục được tình trạng mất bám, mất quỹ đạo bám trong môi trường có mục tiêu bị che khuất. Thuật toán là sự kết hợp tư tưởng của phương pháp liên kết dữ liệu đa giả thiết và lọc Kalman mở rộng. Bài báo cũng chứng minh sự tồn tại của lời giải tối ưu từng bước và đưa ra thuật toán tìm lời giải \epsilon-tối ưu.