Efficient and stable recovery of Legendre-sparse polynomials

H. Rauhut, Rachel A. Ward
{"title":"Efficient and stable recovery of Legendre-sparse polynomials","authors":"H. Rauhut, Rachel A. Ward","doi":"10.1109/CISS.2010.5464911","DOIUrl":null,"url":null,"abstract":"We consider the recovery of polynomials that are sparse with respect to the basis of Legendre polynomials from a small number of random sampling points. We show that a Legendre s-sparse polynomial of maximal degree N can be recovered from m ≍ s log<sup>4</sup>(N) random samples that are chosen independently according to the Chebyshev probability measure π<sup>Ȓ1</sup>(1 - x<sup>2</sup>)<sup>Ȓ</sup>dx on [Ȓ1; 1]. As an efficient recovery method, ℓ<inf>1</inf>-minimization can be used. We establish these results by showing the restricted isometry property of a preconditioned random Legendre matrix. Our results extend to a large class of orthogonal polynomial systems on [Ȓ1; 1]. As a byproduct, we obtain condition number estimates for preconditioned random Legendre matrices that should be of interest on their own.","PeriodicalId":118872,"journal":{"name":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","volume":"744 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 44th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2010.5464911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the recovery of polynomials that are sparse with respect to the basis of Legendre polynomials from a small number of random sampling points. We show that a Legendre s-sparse polynomial of maximal degree N can be recovered from m ≍ s log4(N) random samples that are chosen independently according to the Chebyshev probability measure πȒ1(1 - x2)Ȓdx on [Ȓ1; 1]. As an efficient recovery method, ℓ1-minimization can be used. We establish these results by showing the restricted isometry property of a preconditioned random Legendre matrix. Our results extend to a large class of orthogonal polynomial systems on [Ȓ1; 1]. As a byproduct, we obtain condition number estimates for preconditioned random Legendre matrices that should be of interest on their own.
legende -稀疏多项式的高效稳定恢复
我们考虑从少量随机采样点恢复相对于勒让德多项式基的稀疏多项式。我们证明了一个最大N次的Legendre s-稀疏多项式可以从m × s log4(N)个随机样本中恢复出来,这些样本是根据Chebyshev概率测度πȒ1(1 - x2)Ȓ´dx在[Ȓ1;1]。最小化是一种有效的恢复方法。我们通过证明一个预条件随机勒让德矩阵的限制等距性质来建立这些结果。我们的结果推广到[Ȓ1]上的一大类正交多项式系统;1]。作为一个副产品,我们获得了预条件随机勒让德矩阵的条件数估计,这些矩阵本身应该是我们感兴趣的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信