Geometric Analysis of Skin Lesion for Skin Cancer Using Image Processing

N. Linsangan, J. Adtoon, J. L. Torres
{"title":"Geometric Analysis of Skin Lesion for Skin Cancer Using Image Processing","authors":"N. Linsangan, J. Adtoon, J. L. Torres","doi":"10.1109/HNICEM.2018.8666296","DOIUrl":null,"url":null,"abstract":"This study focuses on the geometric features of skin lesions for detecting and classifying skin cancer. Geometric features of the skin lesion are extracted following the asymmetry, border, and diameter parameters of the ABCD-Rule of Dermoscopy. In particular, area, perimeter, circularity index, greatest and shortest diameter, irregularity index and equivalent diameter are the parameters loaded in the dataset for classification. Three classifications of skin lesion are considered in this study such as malignant melanoma, benign melanoma, and unknown. Classification of skin lesion images is done through k-Nearest Neighbors (k-NN) algorithm and shows an accuracy of 90.0% in the functionality testing.","PeriodicalId":426103,"journal":{"name":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2018.8666296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This study focuses on the geometric features of skin lesions for detecting and classifying skin cancer. Geometric features of the skin lesion are extracted following the asymmetry, border, and diameter parameters of the ABCD-Rule of Dermoscopy. In particular, area, perimeter, circularity index, greatest and shortest diameter, irregularity index and equivalent diameter are the parameters loaded in the dataset for classification. Three classifications of skin lesion are considered in this study such as malignant melanoma, benign melanoma, and unknown. Classification of skin lesion images is done through k-Nearest Neighbors (k-NN) algorithm and shows an accuracy of 90.0% in the functionality testing.
基于图像处理的皮肤癌皮肤病变几何分析
本研究的重点是皮肤病变的几何特征,用于检测和分类皮肤癌。根据皮肤镜abcd规则的不对称性、边界和直径参数提取皮肤病变的几何特征。其中,面积、周长、圆度指数、最大和最短直径、不规则度指数和等效直径是加载在数据集中用于分类的参数。本研究将皮肤病变分为恶性黑色素瘤、良性黑色素瘤和未知黑色素瘤。通过k-Nearest Neighbors (k-NN)算法对皮肤病变图像进行分类,在功能测试中准确率达到90.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信