Forecasting of Shatt al-Arab water levels using autoregressive models and Seasonal Moving Average (SARIMA)

A. Husham, Bahaa Abdul Razak
{"title":"Forecasting of Shatt al-Arab water levels using autoregressive models and Seasonal Moving Average (SARIMA)","authors":"A. Husham, Bahaa Abdul Razak","doi":"10.29124/kjeas.1547.8","DOIUrl":null,"url":null,"abstract":"The research aims to provide an analytical study of the monthly platforms of Shatt al-Arab waters in Basra governorate by adopting seasonal time chain models. Water tables are directly influencing the levels of salt concentrations by pushing the saline tongue from the Shatt al-Arab waters. This will result in reducing environmental and economic adverse effects, Thus, one of the integration of SARIMA time series integrated regression models and seasonal moving circles to predict future levels of Arabian shatters using the Box-Jenkins methodology, using the data of the desks for the period from January 2009 to December 2021, Accordingly, the study was able to identify the appropriate template for time-series data in the SARIMA (1.1.1) (1.1.1)12 model based on the criteria of good conformity (LogL, AIC, BIC, HQ) and diagnostic tests, where predictive values showed an increasing frequency in the Arab Shatt water levels for the duration (Jan. /2022 - Dec. /2030).","PeriodicalId":181022,"journal":{"name":"Al Kut Journal of Economics and Administrative Sciences","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al Kut Journal of Economics and Administrative Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29124/kjeas.1547.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The research aims to provide an analytical study of the monthly platforms of Shatt al-Arab waters in Basra governorate by adopting seasonal time chain models. Water tables are directly influencing the levels of salt concentrations by pushing the saline tongue from the Shatt al-Arab waters. This will result in reducing environmental and economic adverse effects, Thus, one of the integration of SARIMA time series integrated regression models and seasonal moving circles to predict future levels of Arabian shatters using the Box-Jenkins methodology, using the data of the desks for the period from January 2009 to December 2021, Accordingly, the study was able to identify the appropriate template for time-series data in the SARIMA (1.1.1) (1.1.1)12 model based on the criteria of good conformity (LogL, AIC, BIC, HQ) and diagnostic tests, where predictive values showed an increasing frequency in the Arab Shatt water levels for the duration (Jan. /2022 - Dec. /2030).
利用自回归模型和季节移动平均(SARIMA)预测阿拉伯河水位
本研究旨在采用季节时间链模型对巴士拉省阿拉伯河水域的月平台进行分析研究。地下水位直接影响着盐的浓度水平,因为它将盐舌推离了阿拉伯河水域。这将减少对环境和经济的不利影响。因此,利用2009年1月至2021年12月期间的数据,将SARIMA时间序列综合回归模型和季节性移动圈结合起来,使用Box-Jenkins方法预测阿拉伯破碎的未来水平。该研究能够根据良好符合性标准(LogL、AIC、BIC、HQ)和诊断测试,确定SARIMA(1.1.1)(1.1.1)(1.1.1)12模型中时间序列数据的适当模板,其中预测值显示在2022年1月至2030年12月期间阿拉伯沙河水位频率增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信