{"title":"Efficient computation of Euclidean shortest paths in the plane","authors":"J. Hershberger, S. Suri","doi":"10.1109/SFCS.1993.366836","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(nlog/sup 2/ n) and requires O(nlog n) space, where n is the total number of vertices in the obstacle polygons. Our algorithm actually computes a planar map that encodes shortest paths from a fixed source point to all other points of the plane; the map can be used to answer single-source shortest path queries in O(log n) time. The time complexity of our algorithm is a significant improvement over all previous results known for the shortest path problem.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74
Abstract
We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(nlog/sup 2/ n) and requires O(nlog n) space, where n is the total number of vertices in the obstacle polygons. Our algorithm actually computes a planar map that encodes shortest paths from a fixed source point to all other points of the plane; the map can be used to answer single-source shortest path queries in O(log n) time. The time complexity of our algorithm is a significant improvement over all previous results known for the shortest path problem.<>