Efficient computation of Euclidean shortest paths in the plane

J. Hershberger, S. Suri
{"title":"Efficient computation of Euclidean shortest paths in the plane","authors":"J. Hershberger, S. Suri","doi":"10.1109/SFCS.1993.366836","DOIUrl":null,"url":null,"abstract":"We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(nlog/sup 2/ n) and requires O(nlog n) space, where n is the total number of vertices in the obstacle polygons. Our algorithm actually computes a planar map that encodes shortest paths from a fixed source point to all other points of the plane; the map can be used to answer single-source shortest path queries in O(log n) time. The time complexity of our algorithm is a significant improvement over all previous results known for the shortest path problem.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

Abstract

We propose a new algorithm for a classical problem in plane computational geometry: computing a shortest path between two points in the presence of polygonal obstacles. Our algorithm runs in worst-case time O(nlog/sup 2/ n) and requires O(nlog n) space, where n is the total number of vertices in the obstacle polygons. Our algorithm actually computes a planar map that encodes shortest paths from a fixed source point to all other points of the plane; the map can be used to answer single-source shortest path queries in O(log n) time. The time complexity of our algorithm is a significant improvement over all previous results known for the shortest path problem.<>
欧几里得最短路径在平面上的有效计算
针对平面计算几何中的一个经典问题:在存在多边形障碍物的情况下计算两点之间的最短路径,提出了一种新的算法。我们的算法在最坏情况下运行时间为O(nlog/sup 2/ n),并且需要O(nlog n)空间,其中n是障碍物多边形中顶点的总数。我们的算法实际上计算了一个平面地图,它编码了从一个固定的源点到平面上所有其他点的最短路径;该映射可用于在O(log n)时间内回答单源最短路径查询。我们的算法的时间复杂度比之前已知的所有最短路径问题的结果有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信