Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs

Valerie King
{"title":"Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs","authors":"Valerie King","doi":"10.1109/SFFCS.1999.814580","DOIUrl":null,"url":null,"abstract":"This paper presents the first fully dynamic algorithms for maintaining all-pairs shortest paths in digraphs with positive integer weights less than b. For approximate shortest paths with an error factor of (2+/spl epsiv/), for any positive constant /spl epsiv/, the amortized update time is O(n/sup 2/ log/sup 2/ n/log log n); for an error factor of (1+/spl epsiv/) the amortized update time is O(n/sup 2/ log/sup 3/ (bn)//spl epsiv//sup 2/). For exact shortest paths the amortized update time is O(n/sup 2.5/ /spl radic/(b log n)). Query time for exact and approximate shortest distances is O(1); exact time and approximate paths can be generated in time proportional to their lengths. Also presented is a fully dynamic transitive closure algorithm with update time O(n/sup 2/ log n) and query time O(1). The previously known fully dynamic transitive closure algorithm with fast query time has one-sided error and update time O(n/sup 2.28/). The algorithms use simple data structures, and are deterministic.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"255","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 255

Abstract

This paper presents the first fully dynamic algorithms for maintaining all-pairs shortest paths in digraphs with positive integer weights less than b. For approximate shortest paths with an error factor of (2+/spl epsiv/), for any positive constant /spl epsiv/, the amortized update time is O(n/sup 2/ log/sup 2/ n/log log n); for an error factor of (1+/spl epsiv/) the amortized update time is O(n/sup 2/ log/sup 3/ (bn)//spl epsiv//sup 2/). For exact shortest paths the amortized update time is O(n/sup 2.5/ /spl radic/(b log n)). Query time for exact and approximate shortest distances is O(1); exact time and approximate paths can be generated in time proportional to their lengths. Also presented is a fully dynamic transitive closure algorithm with update time O(n/sup 2/ log n) and query time O(1). The previously known fully dynamic transitive closure algorithm with fast query time has one-sided error and update time O(n/sup 2.28/). The algorithms use simple data structures, and are deterministic.
有向图中维持全对最短路径和传递闭包的全动态算法
本文首次给出了在权值小于b的有向图中维护全对最短路径的全动态算法。对于误差因子为(2+/spl epsiv/)的近似最短路径,对于任意正常数/spl epsiv/,其平摊更新时间为O(n/sup 2/ log/sup 2/ n/log log n);当误差因子为(1+/spl epsiv/)时,平摊更新时间为O(n/sup 2/ log/sup 3/ (bn)//spl epsiv//sup 2/)。对于精确最短路径,平摊更新时间为O(n/sup 2.5/ /spl radic/(b log n)))。精确和近似最短距离的查询时间为O(1);精确的时间路径和近似路径可以在与它们的长度成正比的时间内生成。提出了一种更新时间为O(n/sup 2/ log n)、查询时间为O(1)的全动态传递闭包算法。先前已知的查询时间快的全动态传递闭包算法存在单侧误差和更新时间0 (n/sup 2.28/)。该算法使用简单的数据结构,并且是确定性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信