Scale selection for classification of point-sampled 3D surfaces

Jean-François Lalonde, R. Unnikrishnan, N. Vandapel, M. Hebert
{"title":"Scale selection for classification of point-sampled 3D surfaces","authors":"Jean-François Lalonde, R. Unnikrishnan, N. Vandapel, M. Hebert","doi":"10.1109/3DIM.2005.71","DOIUrl":null,"url":null,"abstract":"Three-dimensional ladar data are commonly used to perform scene understanding for outdoor mobile robots, specifically in natural terrain. One effective method is to classify points using features based on local point cloud distribution into surfaces, linear structures or clutter volumes. But the local features are computed using 3D points within a support-volume. Local and global point density variations and the presence of multiple manifolds make the problem of selecting the size of this support volume, or scale, challenging. In this paper, we adopt an approach inspired by recent developments in computational geometry (Mitra et al., 2005) and investigate the problem of automatic data-driven scale selection to improve point cloud classification. The approach is validated with results using data from different sensors in various environments classified into different terrain types (vegetation, solid surface and linear structure).","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

Three-dimensional ladar data are commonly used to perform scene understanding for outdoor mobile robots, specifically in natural terrain. One effective method is to classify points using features based on local point cloud distribution into surfaces, linear structures or clutter volumes. But the local features are computed using 3D points within a support-volume. Local and global point density variations and the presence of multiple manifolds make the problem of selecting the size of this support volume, or scale, challenging. In this paper, we adopt an approach inspired by recent developments in computational geometry (Mitra et al., 2005) and investigate the problem of automatic data-driven scale selection to improve point cloud classification. The approach is validated with results using data from different sensors in various environments classified into different terrain types (vegetation, solid surface and linear structure).
点采样三维曲面分类的尺度选择
三维雷达数据通常用于户外移动机器人的场景理解,特别是在自然地形中。一种有效的方法是利用基于局部点云分布的特征将点分类为曲面、线性结构或杂波体。但局部特征是使用支撑体内的3D点计算的。局部和全局点密度的变化以及多个流形的存在使得选择支持体积的大小或规模的问题具有挑战性。在本文中,我们采用了一种受计算几何最新发展启发的方法(Mitra et al., 2005),并研究了自动数据驱动的尺度选择问题,以改进点云分类。利用不同环境(植被、固体表面和线性结构)中不同传感器的数据对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信