PILOT: Using a Small Satellite Constellation to Understand Cold Plasma in the Inner Magnetosphere

C. Spittler, D. Malaspina, R. Ergun, Jason J. Link, B. Unruh, M. Danowski, R. Rohrschneider, J. Goldstein, Lauren DeMoudt, J. Parker
{"title":"PILOT: Using a Small Satellite Constellation to Understand Cold Plasma in the Inner Magnetosphere","authors":"C. Spittler, D. Malaspina, R. Ergun, Jason J. Link, B. Unruh, M. Danowski, R. Rohrschneider, J. Goldstein, Lauren DeMoudt, J. Parker","doi":"10.1109/AERO55745.2023.10115934","DOIUrl":null,"url":null,"abstract":"Magnetospheric physics has a massive problem: we have not yet determined the fundamental processes that govern plasma mass and energy flow through the terrestrial magnetosphere, nor the degree to which these flows regulate key magnetospheric subsystems. The Plasma Imaging LOcal and Tomographic experiment (PILOT) mission concept leverages a small satellite constellation to provide the transformational multi-scale observations needed to resolve critical heliophysics problems related to mass and energy flow through a planetary magnetosphere, enabling previously infeasible magnetospheric science. The PILOT mission concept, developed as a NASA-funded Heliophysics Mission Concept Study, is a potential Flagship-class NASA Heliophysics mission to be considered by the 2024–2033 Solar and Space Physics Decadal Survey. PILOT uses a constellation of 30 microsat spacecraft and 4 smallsat spacecraft in two highly-elliptical, equatorial Earth orbits to make high-resolution radio tomographic density maps of total plasma density in the equatorial plane, augmented by EUV imaging of ion plasma density and flows in the meridional plane, and in-situ measurements of electric and magnetic fields, plasma density, energetic particles, and ion composition. The comprehensive suite of measurements made by the PILOT constellation fully captures plasma mass dynamics and its impact on magnetospheric systems over an unprecedented range of spatial and temporal scales. Here we discuss the PILOT mission architecture, including instrument heritage, manufacturing strategy, concept of operations, and required technology development.","PeriodicalId":344285,"journal":{"name":"2023 IEEE Aerospace Conference","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO55745.2023.10115934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetospheric physics has a massive problem: we have not yet determined the fundamental processes that govern plasma mass and energy flow through the terrestrial magnetosphere, nor the degree to which these flows regulate key magnetospheric subsystems. The Plasma Imaging LOcal and Tomographic experiment (PILOT) mission concept leverages a small satellite constellation to provide the transformational multi-scale observations needed to resolve critical heliophysics problems related to mass and energy flow through a planetary magnetosphere, enabling previously infeasible magnetospheric science. The PILOT mission concept, developed as a NASA-funded Heliophysics Mission Concept Study, is a potential Flagship-class NASA Heliophysics mission to be considered by the 2024–2033 Solar and Space Physics Decadal Survey. PILOT uses a constellation of 30 microsat spacecraft and 4 smallsat spacecraft in two highly-elliptical, equatorial Earth orbits to make high-resolution radio tomographic density maps of total plasma density in the equatorial plane, augmented by EUV imaging of ion plasma density and flows in the meridional plane, and in-situ measurements of electric and magnetic fields, plasma density, energetic particles, and ion composition. The comprehensive suite of measurements made by the PILOT constellation fully captures plasma mass dynamics and its impact on magnetospheric systems over an unprecedented range of spatial and temporal scales. Here we discuss the PILOT mission architecture, including instrument heritage, manufacturing strategy, concept of operations, and required technology development.
飞行员:利用小卫星星座来了解内磁层中的冷等离子体
磁层物理学有一个巨大的问题:我们还没有确定控制等离子体质量和能量在地球磁层中流动的基本过程,也没有确定这些流动对关键磁层子系统的调节程度。等离子体局部成像和层析实验(PILOT)任务概念利用一个小卫星星座来提供所需的转换多尺度观测,以解决与行星磁层质量和能量流动相关的关键太阳物理问题,使以前不可行的磁层科学成为可能。PILOT任务概念是由NASA资助的太阳物理任务概念研究,是2024-2033年太阳和空间物理年代际调查中考虑的潜在旗舰级NASA太阳物理任务。PILOT利用30颗微卫星和4颗小卫星组成的星座,在两个高椭圆的赤道地球轨道上制作赤道平面总等离子体密度的高分辨率射电层析密度图,并通过EUV成像对子午面离子等离子体密度和流量进行增强,以及对电场和磁场、等离子体密度、高能粒子和离子成分的原位测量。由PILOT星座进行的综合测量充分捕获了等离子体质量动力学及其对磁层系统在前所未有的空间和时间尺度范围内的影响。在这里,我们讨论了PILOT任务架构,包括仪器遗产、制造战略、操作概念和所需的技术开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信