Forced Outage Cause Identification Based on Bayesian Networks

A. B. Tronchoni, C. Pretto, V. Licks, M. Rosa, F. Lemos
{"title":"Forced Outage Cause Identification Based on Bayesian Networks","authors":"A. B. Tronchoni, C. Pretto, V. Licks, M. Rosa, F. Lemos","doi":"10.1109/PCT.2007.4538554","DOIUrl":null,"url":null,"abstract":"The advances in area of information technology and applications, specially mobile and wireless technology, are providing conditions to improve data acquisition to be used in power system analysis. These conditions together with computational intelligence methods help provide an improvement in reliability analysis of distribution systems. This paper presents the development of a computational systems using mobile computing and a methodology based on Bayesian Networks to identify forced outage causes. The proposed system was validated using data collection of Brazilian distribution utility.","PeriodicalId":356805,"journal":{"name":"2007 IEEE Lausanne Power Tech","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Lausanne Power Tech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCT.2007.4538554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The advances in area of information technology and applications, specially mobile and wireless technology, are providing conditions to improve data acquisition to be used in power system analysis. These conditions together with computational intelligence methods help provide an improvement in reliability analysis of distribution systems. This paper presents the development of a computational systems using mobile computing and a methodology based on Bayesian Networks to identify forced outage causes. The proposed system was validated using data collection of Brazilian distribution utility.
基于贝叶斯网络的强制停机原因识别
信息技术和应用领域,特别是移动和无线技术的发展,为改进电力系统分析中的数据采集提供了条件。这些条件与计算智能方法一起有助于改进配电系统的可靠性分析。本文介绍了使用移动计算和基于贝叶斯网络的方法来识别强制中断原因的计算系统的发展。利用巴西配电公司收集的数据对该系统进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信