Classification of Electrical Appliance Devices Using –Bi-LSTM and Genetic Algorithm

G. Küçükyildiz
{"title":"Classification of Electrical Appliance Devices Using –Bi-LSTM and Genetic Algorithm","authors":"G. Küçükyildiz","doi":"10.53448/akuumubd.1288738","DOIUrl":null,"url":null,"abstract":"Elektriğe bağlı olan her ev aletinin akım/gerilim karakteristiği farklı olduğundan, bu cihazların her birinin şebekeden çektiği gücün özelliği farklı olmaktadır. Bu nedenle şebekeye bağlı olan cihazın tipinin tespiti cihazın şebekeden çektiği harmoniğin tespit edilmesinde ve de düzeltilmesinde önemli rol oynamaktadır. Bu çalışma kapsamında farklı derin öğrenme teknikleri kullanılarak “ACS-F2 Elektrikli Ev Aletleri Veri Seti” üzerinde sınıflandırma gerçekleştirilmiştir. ACS-F2 veri setinde toplamda 15 farklı sınıf için 225 cihaz bulunmasına karşın, çalışma kapsamında yapılan ön işlemler ile veri setindeki sınıf sayısı 14’e indirilmiştir. Sonrasında LSTM, FeedForwardNet, çift yönlü LSTM( Bi-LSTM) ve parametreleri genetik algoritma tarafından optimize edilmiş Bi-LSTM kullanılarak sınıflandırma yapılarak sınıflandırıcının performansları karşılaştırılmıştır. Yapılan çalışma kapsamında parametreleri optimize edilmiş sınıflandırıcının diğer yöntemlerden daha başarılı sonuçlar elde ettiği gözlenmiştir.","PeriodicalId":313113,"journal":{"name":"Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53448/akuumubd.1288738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elektriğe bağlı olan her ev aletinin akım/gerilim karakteristiği farklı olduğundan, bu cihazların her birinin şebekeden çektiği gücün özelliği farklı olmaktadır. Bu nedenle şebekeye bağlı olan cihazın tipinin tespiti cihazın şebekeden çektiği harmoniğin tespit edilmesinde ve de düzeltilmesinde önemli rol oynamaktadır. Bu çalışma kapsamında farklı derin öğrenme teknikleri kullanılarak “ACS-F2 Elektrikli Ev Aletleri Veri Seti” üzerinde sınıflandırma gerçekleştirilmiştir. ACS-F2 veri setinde toplamda 15 farklı sınıf için 225 cihaz bulunmasına karşın, çalışma kapsamında yapılan ön işlemler ile veri setindeki sınıf sayısı 14’e indirilmiştir. Sonrasında LSTM, FeedForwardNet, çift yönlü LSTM( Bi-LSTM) ve parametreleri genetik algoritma tarafından optimize edilmiş Bi-LSTM kullanılarak sınıflandırma yapılarak sınıflandırıcının performansları karşılaştırılmıştır. Yapılan çalışma kapsamında parametreleri optimize edilmiş sınıflandırıcının diğer yöntemlerden daha başarılı sonuçlar elde ettiği gözlenmiştir.
基于-Bi-LSTM和遗传算法的电器设备分类
由于每个连接到电网的家用电器的电流/电压特性不同,因此每个设备从电网汲取的电能特性也不同。因此,确定连接到电网的设备类型对于检测和纠正设备从电网汲取的谐波起着重要作用。在本研究范围内,使用不同的深度学习技术对 "ACS-F2 家用电器数据集 "进行了分类。虽然 ACS-F2 数据集中有 15 个不同类别的 225 个设备,但在本研究范围内进行预处理后,数据集中的类别数量减少到 14 个。然后,使用 LSTM、FeedForwardNet、双向 LSTM(Bi-LSTM)和 Bi-LSTM 进行分类,并通过遗传算法优化其参数,比较分类器的性能。在研究范围内观察到,参数经过优化的分类器比其他方法获得了更成功的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信