Chang Sun, Zili Wang, Shuyou Zhang, Le Wang, Jianrong Tan
{"title":"Physical Logic Enhanced Network for Small-Sample Bi-Layer Metallic Tubes Bending Springback Prediction","authors":"Chang Sun, Zili Wang, Shuyou Zhang, Le Wang, Jianrong Tan","doi":"10.48550/arXiv.2209.09870","DOIUrl":null,"url":null,"abstract":"Bi-layer metallic tube (BMT) plays an extremely crucial role in engineering applications, with rotary draw bending (RDB) the high-precision bending processing can be achieved, however, the product will further springback. Due to the complex structure of BMT and the high cost of dataset acquisition, the existing methods based on mechanism research and machine learning cannot meet the engineering requirements of springback prediction. Based on the preliminary mechanism analysis, a physical logic enhanced network (PE-NET) is proposed. The architecture includes ES-NET which equivalent the BMT to the single-layer tube, and SP-NET for the final prediction of springback with sufficient singlelayer tube samples. Specifically, in the first stage, with the theory-driven preexploration and the data-driven pretraining, the ES-NET and SP-NET are constructed, respectively. In the second stage, under the physical logic, the PE-NET is assembled by ES-NET and SP-NET and then fine-tuned with the small sample BMT dataset and composite loss function. The validity and stability of the proposed method are verified by the FE simulation dataset, the small-sample dataset BMT springback angle prediction is achieved, and the method potential in interpretability and engineering applications are demonstrated.","PeriodicalId":155654,"journal":{"name":"CAAI International Conference on Artificial Intelligence","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAAI International Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.09870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bi-layer metallic tube (BMT) plays an extremely crucial role in engineering applications, with rotary draw bending (RDB) the high-precision bending processing can be achieved, however, the product will further springback. Due to the complex structure of BMT and the high cost of dataset acquisition, the existing methods based on mechanism research and machine learning cannot meet the engineering requirements of springback prediction. Based on the preliminary mechanism analysis, a physical logic enhanced network (PE-NET) is proposed. The architecture includes ES-NET which equivalent the BMT to the single-layer tube, and SP-NET for the final prediction of springback with sufficient singlelayer tube samples. Specifically, in the first stage, with the theory-driven preexploration and the data-driven pretraining, the ES-NET and SP-NET are constructed, respectively. In the second stage, under the physical logic, the PE-NET is assembled by ES-NET and SP-NET and then fine-tuned with the small sample BMT dataset and composite loss function. The validity and stability of the proposed method are verified by the FE simulation dataset, the small-sample dataset BMT springback angle prediction is achieved, and the method potential in interpretability and engineering applications are demonstrated.