Multilevel Optimal Design of a Solar PV Array System Using Game Theory Approach

Hoe-Gil Lee
{"title":"Multilevel Optimal Design of a Solar PV Array System Using Game Theory Approach","authors":"Hoe-Gil Lee","doi":"10.1115/power2019-1840","DOIUrl":null,"url":null,"abstract":"\n This study proposes a method, grounded in a multilevel decision-making approach, for a stationary fixed-plate photovoltaic (PV) collector system. The system is comprised of three different subsystems: cell, panel, and array. We consider photovoltaic effects for output performance and an inverter system for distribution from the PV collector, including multiple conflicting objectives in individual subsystems in terms of cell conversion efficiency, power output, incident solar energy, seasonal characteristics, and costs. In terms of the performance in individual subsystems, the problem is reformulated into several smaller subproblems at each subsystem, and a coordination problem at the system level is compromised for optimization purposes. Multilevel optimization for the stationary fixed-plate PV collector system is achieved through the results of single-objective optimization that uses Genetic Algorithm programming (GA) to find global optimum solutions with decision-making under modified game theory. Thus, this work contributes to the optimal design of a stationary fixed-plate PV collector system for the best compromise solution based on specified requirements.","PeriodicalId":315864,"journal":{"name":"ASME 2019 Power Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/power2019-1840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a method, grounded in a multilevel decision-making approach, for a stationary fixed-plate photovoltaic (PV) collector system. The system is comprised of three different subsystems: cell, panel, and array. We consider photovoltaic effects for output performance and an inverter system for distribution from the PV collector, including multiple conflicting objectives in individual subsystems in terms of cell conversion efficiency, power output, incident solar energy, seasonal characteristics, and costs. In terms of the performance in individual subsystems, the problem is reformulated into several smaller subproblems at each subsystem, and a coordination problem at the system level is compromised for optimization purposes. Multilevel optimization for the stationary fixed-plate PV collector system is achieved through the results of single-objective optimization that uses Genetic Algorithm programming (GA) to find global optimum solutions with decision-making under modified game theory. Thus, this work contributes to the optimal design of a stationary fixed-plate PV collector system for the best compromise solution based on specified requirements.
基于博弈论的太阳能光伏阵列系统多级优化设计
本研究提出了一种基于多层决策方法的固定式光伏集热器系统的方法。该系统由三个不同的子系统组成:单元、面板和阵列。我们考虑光伏效应对输出性能的影响和光伏集热器分配的逆变器系统,包括在电池转换效率、功率输出、入射太阳能、季节特征和成本方面各个子系统中的多个相互冲突的目标。就单个子系统的性能而言,该问题在每个子系统中被重新表述为几个较小的子问题,并且为了优化目的而折衷了系统级的协调问题。利用改进博弈论下的遗传算法求解全局最优解的单目标优化结果,实现了固定式光伏集热器系统的多级优化。因此,本文的工作有助于固定式光伏集热器系统的优化设计,以获得基于特定要求的最佳折衷方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信