Fast robust adaptation of predictor weights from min/max neighboring pixels for minimum conditional entropy

D. Speck
{"title":"Fast robust adaptation of predictor weights from min/max neighboring pixels for minimum conditional entropy","authors":"D. Speck","doi":"10.1109/ACSSC.1995.540547","DOIUrl":null,"url":null,"abstract":"Most linear predictors for image compression use only 2 or 3 weights, usually simple constants. Beyond that, intuitive models break down. Optimization does little better; the textbook minimum-variance model minimizes distortion at fixed rate, rather than minimizing entropy at fixed distortion. Its overemphasis of large prediction errors makes additional weights overly sensitive to small differences between large sums. Round-off error and singular matrices make one-pass adaptive coding difficult. This paper argues that simply bumping fixed-point weights of min/max neighboring pixels is closer to optimum, then demonstrates practicality and robustness up to 5 or 6 weights.","PeriodicalId":171264,"journal":{"name":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1995.540547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Most linear predictors for image compression use only 2 or 3 weights, usually simple constants. Beyond that, intuitive models break down. Optimization does little better; the textbook minimum-variance model minimizes distortion at fixed rate, rather than minimizing entropy at fixed distortion. Its overemphasis of large prediction errors makes additional weights overly sensitive to small differences between large sums. Round-off error and singular matrices make one-pass adaptive coding difficult. This paper argues that simply bumping fixed-point weights of min/max neighboring pixels is closer to optimum, then demonstrates practicality and robustness up to 5 or 6 weights.
快速鲁棒自适应最小条件熵最小相邻像素的预测权值
大多数用于图像压缩的线性预测器只使用2或3个权重,通常是简单的常量。除此之外,直觉模型就失效了。优化效果也好不到哪里去;教科书上的最小方差模型以固定速率最小化失真,而不是以固定失真最小化熵。它过分强调大的预测误差,使得附加权重对大的总和之间的微小差异过于敏感。舍入误差和奇异矩阵使得单次自适应编码变得困难。本文认为,简单地提高最小/最大相邻像素的定点权重更接近最优,然后证明了高达5或6个权重的实用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信