Деякі застосування елементів теорії скінченних границь до розв'язування задач з математичного аналізу

П.Ф. Самусенко
{"title":"Деякі застосування елементів теорії скінченних границь до розв'язування задач з математичного аналізу","authors":"П.Ф. Самусенко","doi":"10.31392/npu-nc.series2.2019.21(28).05","DOIUrl":null,"url":null,"abstract":"У роботі проаналізовано доцільність використання апарату теорії скінченних різниць для обчислення сум. Наведено приклади знаходження сум, що ґрунтуються на застосуванні властивостей різницевого та антирізницевого оператора. Вказано відмінності та спільні риси між властивостями розв'язків найпростіших різницевих та диференціальних рівнянь. З’ясовано переваги та недоліки знаходження загального члена послідовності чисел Фібоначчі за допомогою рекурентного співвідношення та як розв'язку відповідного різницевого рівняння","PeriodicalId":439192,"journal":{"name":"Науковий часопис НПУ імені М.П. Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Науковий часопис НПУ імені М.П. Драгоманова. Серія 2. Комп’ютерно-орієнтовані системи навчання","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31392/npu-nc.series2.2019.21(28).05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

У роботі проаналізовано доцільність використання апарату теорії скінченних різниць для обчислення сум. Наведено приклади знаходження сум, що ґрунтуються на застосуванні властивостей різницевого та антирізницевого оператора. Вказано відмінності та спільні риси між властивостями розв'язків найпростіших різницевих та диференціальних рівнянь. З’ясовано переваги та недоліки знаходження загального члена послідовності чисел Фібоначчі за допомогою рекурентного співвідношення та як розв'язку відповідного різницевого рівняння
本文分析了使用有限差分理论装置计算和的可行性。文中举例说明了基于差分和反差分算子性质的求和方法。指出了最简单差分方程和微分方程解的性质之间的区别和共同点。阐明了利用递推关系求斐波那契数列的公共项和作为相应差分方程的解的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信