Sine Optimization Algorithm (SOA): A novel optimization algorithm by change update position strategy of search agent in Sine Cosine Algorithm

Mostafa Meshkat, Mohsen Parhizgar
{"title":"Sine Optimization Algorithm (SOA): A novel optimization algorithm by change update position strategy of search agent in Sine Cosine Algorithm","authors":"Mostafa Meshkat, Mohsen Parhizgar","doi":"10.1109/ICSPIS.2017.8311581","DOIUrl":null,"url":null,"abstract":"In this paper, the update position of search agent strategy in Sine Cosine Algorithm (SCA) is replaced with a new update position strategy. In this strategy, the update position of each search agent is determined randomly by the search agent with the best position or the position of a random search agent. Moreover, contrary to SCA, this strategy merely uses sine function. That is why the proposed method is called Sine Optimization Algorithm (SOA). The performance of SOA and SCA was evaluated over a set of benchmark functions. The results show that SOA enjoys a higher accuracy to reach the global best compared with SCA, while also having a higher convergence speed.","PeriodicalId":380266,"journal":{"name":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","volume":"38 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd Iranian Conference on Intelligent Systems and Signal Processing (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS.2017.8311581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, the update position of search agent strategy in Sine Cosine Algorithm (SCA) is replaced with a new update position strategy. In this strategy, the update position of each search agent is determined randomly by the search agent with the best position or the position of a random search agent. Moreover, contrary to SCA, this strategy merely uses sine function. That is why the proposed method is called Sine Optimization Algorithm (SOA). The performance of SOA and SCA was evaluated over a set of benchmark functions. The results show that SOA enjoys a higher accuracy to reach the global best compared with SCA, while also having a higher convergence speed.
正弦优化算法(SOA):一种利用正弦余弦算法中搜索主体改变更新位置策略的优化算法
本文将正弦余弦算法(SCA)中搜索代理策略的更新位置替换为新的更新位置策略。在该策略中,每个搜索代理的更新位置由具有最佳位置的搜索代理或随机搜索代理的位置随机确定。此外,与SCA相反,此策略仅使用正弦函数。这就是为什么所提出的方法被称为正弦优化算法(SOA)。SOA和SCA的性能通过一组基准函数进行评估。结果表明,与SCA相比,SOA具有更高的全局最佳精度,同时具有更高的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信