E. Casu, W. Vitale, N. Oliva, T. Rosca, A. Biswas, C. Alper, A. Krammer, G. V. Luong, Q. Zhao, S. Mantl, A. Schuler, A. Seabaugh, A. Ionescu
{"title":"Hybrid phase-change — Tunnel FET (PC-TFET) switch with subthreshold swing < 10mV/decade and sub-0.1 body factor: Digital and analog benchmarking","authors":"E. Casu, W. Vitale, N. Oliva, T. Rosca, A. Biswas, C. Alper, A. Krammer, G. V. Luong, Q. Zhao, S. Mantl, A. Schuler, A. Seabaugh, A. Ionescu","doi":"10.1109/IEDM.2016.7838452","DOIUrl":null,"url":null,"abstract":"In this paper we report the first hybrid Phase-Change — Tunnel FET (PC-TFET) device configurations for achieving a deep sub-thermionic steep subthreshold swing at room temperature and subthreshold power savings. The proposed hybrid device feedbacks the steep transition of Metal-Insulator transition in a VO2 structure into Gate or Source configurations of strained silicon nanowire Tunnel FETs, to achieve a switching with lon/Ioff better that 5.5×106 and with a subthreshold swing of 4.0 mV/dec at 25 °C. We demonstrate that the principle of PC-TFET switching relates to an internal amplification resulting in a sub-unity body factor, m, which is reduced to values below 0.1 for a current range larger than 2–3 decades. We report a full experimental digital and analog benchmarking of the new device and compare it with Tunnel FETs and CMOS. Remarkably, the PC-TFET can achieve analog figures of merit like gm/Id breaking the 40 V−1 limit of MOSFETs. We demonstrate and report the first buffered oscillator cell for neuromorphic computing exploiting the gate configuration of PC-TFET.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
In this paper we report the first hybrid Phase-Change — Tunnel FET (PC-TFET) device configurations for achieving a deep sub-thermionic steep subthreshold swing at room temperature and subthreshold power savings. The proposed hybrid device feedbacks the steep transition of Metal-Insulator transition in a VO2 structure into Gate or Source configurations of strained silicon nanowire Tunnel FETs, to achieve a switching with lon/Ioff better that 5.5×106 and with a subthreshold swing of 4.0 mV/dec at 25 °C. We demonstrate that the principle of PC-TFET switching relates to an internal amplification resulting in a sub-unity body factor, m, which is reduced to values below 0.1 for a current range larger than 2–3 decades. We report a full experimental digital and analog benchmarking of the new device and compare it with Tunnel FETs and CMOS. Remarkably, the PC-TFET can achieve analog figures of merit like gm/Id breaking the 40 V−1 limit of MOSFETs. We demonstrate and report the first buffered oscillator cell for neuromorphic computing exploiting the gate configuration of PC-TFET.