{"title":"An Approximation Algorithm for Approximation Rank","authors":"Troy Lee, A. Shraibman","doi":"10.1109/CCC.2009.25","DOIUrl":null,"url":null,"abstract":"One of the strongest techniques available for showing lower bounds on bounded-error communication complexity is the logarithm of the approximation rank of the communication matrix---the minimum rank of a matrix which is entrywise close to the communication matrix. Krause showed that the logarithm of approximation rank is a lower bound in the randomized case, and later Buhrman and de Wolf showed it could also be used for quantum communication complexity. As a lower bound technique, approximation rank has two main drawbacks: it is difficult to compute, and it is not known to lower bound the model of quantum communication complexity with entanglement. We give a polynomial time constant factor approximation algorithm to the logarithm of approximation rank, and show that the logarithm of approximation rank is a lower bound on quantum communication complexity with entanglement.","PeriodicalId":158572,"journal":{"name":"2009 24th Annual IEEE Conference on Computational Complexity","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 24th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2009.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
One of the strongest techniques available for showing lower bounds on bounded-error communication complexity is the logarithm of the approximation rank of the communication matrix---the minimum rank of a matrix which is entrywise close to the communication matrix. Krause showed that the logarithm of approximation rank is a lower bound in the randomized case, and later Buhrman and de Wolf showed it could also be used for quantum communication complexity. As a lower bound technique, approximation rank has two main drawbacks: it is difficult to compute, and it is not known to lower bound the model of quantum communication complexity with entanglement. We give a polynomial time constant factor approximation algorithm to the logarithm of approximation rank, and show that the logarithm of approximation rank is a lower bound on quantum communication complexity with entanglement.