Surface Deformations Driven by Vector-Valued 1-Forms

G. Taubin, Çağatay Demiralp
{"title":"Surface Deformations Driven by Vector-Valued 1-Forms","authors":"G. Taubin, Çağatay Demiralp","doi":"10.1109/SMI.2010.36","DOIUrl":null,"url":null,"abstract":"We formulate the problem of surface deformations as the integration in the least square sense of a discrete vector-valued 1-forms obtained as the result of applying smooth stretching and rotation fields to the discrete differential of the 0-form defined by the vertex coordinates of a polygon mesh graph. Simple algorithms result from this formulation, which reduces to the solution of sparse linear systems. The method handles large angle rotations in one step and is invariant to rotations, translations, and scaling. We also introduce the integration of 1-forms along spanning trees as a heuristic to speed up the convergence of iterative solvers.","PeriodicalId":404708,"journal":{"name":"2010 Shape Modeling International Conference","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Shape Modeling International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2010.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We formulate the problem of surface deformations as the integration in the least square sense of a discrete vector-valued 1-forms obtained as the result of applying smooth stretching and rotation fields to the discrete differential of the 0-form defined by the vertex coordinates of a polygon mesh graph. Simple algorithms result from this formulation, which reduces to the solution of sparse linear systems. The method handles large angle rotations in one step and is invariant to rotations, translations, and scaling. We also introduce the integration of 1-forms along spanning trees as a heuristic to speed up the convergence of iterative solvers.
由矢量值1-形式驱动的表面变形
我们将曲面变形问题表述为对多边形网格图顶点坐标定义的0形式的离散微分应用光滑拉伸和旋转场得到的离散向量值1形式的最小二乘意义上的积分。该公式可简化为稀疏线性系统的求解。该方法在一步中处理大角度旋转,并且对旋转、平移和缩放保持不变。我们还引入了沿生成树的1-形式的积分作为一种启发式方法来加速迭代求解器的收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信