Cooperative and Geometric Learning for path planning of UAVs

Baochang Zhang, Zhili Mao, Wanquan Liu, Jianzhuang Liu, Zheng Zheng
{"title":"Cooperative and Geometric Learning for path planning of UAVs","authors":"Baochang Zhang, Zhili Mao, Wanquan Liu, Jianzhuang Liu, Zheng Zheng","doi":"10.1109/ICUAS.2013.6564675","DOIUrl":null,"url":null,"abstract":"We propose a new learning algorithm, named Cooperative and Geometric Learning (CGL), to solve maneuverability, collision avoidance and information sharing problems in path planning for Unmanned Aerial Vehicles (UAVs). The contributions of CGL are threefold: 1) CGL exploits a specific reward matrix G, which leads to a simple and efficient algorithm for the path planning of multiple UAVs. 2) The optimal path in terms of path length and risk measure from a given point to the target point can be calculated. 3) In CGL, the reward matrix G is calculated in real-time and adaptively updated based on the geometric distance and risk information shared by other UAVs. Extensive experimental results validate the effectiveness and feasibility of CGL on the navigation of UAVs.","PeriodicalId":322089,"journal":{"name":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2013.6564675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We propose a new learning algorithm, named Cooperative and Geometric Learning (CGL), to solve maneuverability, collision avoidance and information sharing problems in path planning for Unmanned Aerial Vehicles (UAVs). The contributions of CGL are threefold: 1) CGL exploits a specific reward matrix G, which leads to a simple and efficient algorithm for the path planning of multiple UAVs. 2) The optimal path in terms of path length and risk measure from a given point to the target point can be calculated. 3) In CGL, the reward matrix G is calculated in real-time and adaptively updated based on the geometric distance and risk information shared by other UAVs. Extensive experimental results validate the effectiveness and feasibility of CGL on the navigation of UAVs.
无人机路径规划的协同几何学习
针对无人机路径规划中的机动性、避碰性和信息共享问题,提出了一种新的学习算法——协同几何学习(CGL)。CGL的贡献体现在三个方面:1)CGL利用了特定的奖励矩阵G,为多无人机的路径规划提供了一种简单高效的算法;2)可以计算出从给定点到目标点的路径长度和风险度量的最优路径。3)在CGL中,根据其他无人机共享的几何距离和风险信息,实时计算并自适应更新奖励矩阵G。大量的实验结果验证了CGL在无人机导航中的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信