LSTM Deep Learning vs ARIMA Algorithms for Univariate Time Series Forecasting: A case study

Jouilil Youness, Mentagui Driss
{"title":"LSTM Deep Learning vs ARIMA Algorithms for Univariate Time Series Forecasting: A case study","authors":"Jouilil Youness, Mentagui Driss","doi":"10.1109/ICOA55659.2022.9934119","DOIUrl":null,"url":null,"abstract":"This manuscript aims to study and compare the Long Short-Term Memory (LSTM) Deep learning to Auto regressive Integrated Moving Average (ARIMA) algorithms for a univariate time series, especially for stock price series. Using the mean absolute percentage error, the mean absolute error, or either root-mean-square deviation and according to our extracted dataset, we find that the classical approaches like ARIMA out-perform deep learning ones since they are very simple to use especially for linear univariate datasets. More specifically, LSTM deep learning algorithms are more powerful and provide better results in terms of predictions.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This manuscript aims to study and compare the Long Short-Term Memory (LSTM) Deep learning to Auto regressive Integrated Moving Average (ARIMA) algorithms for a univariate time series, especially for stock price series. Using the mean absolute percentage error, the mean absolute error, or either root-mean-square deviation and according to our extracted dataset, we find that the classical approaches like ARIMA out-perform deep learning ones since they are very simple to use especially for linear univariate datasets. More specifically, LSTM deep learning algorithms are more powerful and provide better results in terms of predictions.
LSTM深度学习与ARIMA算法在单变量时间序列预测中的应用
本文旨在研究和比较长短期记忆(LSTM)深度学习和自动回归综合移动平均(ARIMA)算法对单变量时间序列,特别是股票价格序列的影响。使用平均绝对百分比误差、平均绝对误差或均方根偏差,并根据我们提取的数据集,我们发现像ARIMA这样的经典方法优于深度学习方法,因为它们非常简单,特别是对于线性单变量数据集。更具体地说,LSTM深度学习算法更强大,在预测方面提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信