{"title":"Amplitude control of the track-induced self-excited vibration in a maglev system","authors":"D. Zhou, Jie Li, Kun Zhang","doi":"10.1109/ICCA.2013.6564925","DOIUrl":null,"url":null,"abstract":"The EMS (Electromagnet Suspension) maglev system uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. The harmonic balance method is applied in this article to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this conclusion, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A P1 controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method is validated by a simulation, which shows a good prospect for its application to real maglev systems.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"450 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6564925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The EMS (Electromagnet Suspension) maglev system uses controlled electromagnetic forces to achieve suspension, and self-excited vibration may occur due to the flexibility of the track. The harmonic balance method is applied in this article to investigate the amplitude of the self-excited vibration, and it is found that the amplitude of the vibration depends on the voltage of the power supplier. Based on this conclusion, a vibration amplitude control method, which controls the amplitude of the vibration by adjusting the voltage of the power supplier, is proposed to attenuate the vibration. A P1 controller is designed to control the amplitude of the vibration at a given level. The effectiveness of this method is validated by a simulation, which shows a good prospect for its application to real maglev systems.