Aaron J. Young, A. M. Simon, Nicholas P. Fey, L. Hargrove
{"title":"Classifying the intent of novel users during human locomotion using powered lower limb prostheses","authors":"Aaron J. Young, A. M. Simon, Nicholas P. Fey, L. Hargrove","doi":"10.1109/NER.2013.6695934","DOIUrl":null,"url":null,"abstract":"Intent recognition systems using pattern recognition technology to control powered lower-limb prostheses are promising for seamlessly changing between locomotion modes- such as transitioning from level walking to stair ascent. These transitions can be accomplished by training an algorithm to recognize the patterns of mechanical and/or myoelectric signals an amputee generates during and between different locomotion modes. While low error rates can be achieved with this method, it typically requires a substantial amount of training data to be gathered. To alleviate this burden, this study investigated training a user-independent classifier from a pool of lower limb amputees performing level walking, ramps and stairs on a powered prosthesis and tested generalization of the classifier to a novel subject. The effect of using the amputee's EMG signals in combination with the mechanical sensors on the leg was also evaluated for this user-independent classifier. Generalization was poor to a novel subject- 48% overall recognition rate with EMG and 62% without (mechanical sensors only). However, an important system improvement could be made by including a few level walking trials of the novel subject (only a few minutes of data collection) in the training data, the overall recognition rate improved to 86% with EMG and 83% without.","PeriodicalId":156952,"journal":{"name":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6695934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50
Abstract
Intent recognition systems using pattern recognition technology to control powered lower-limb prostheses are promising for seamlessly changing between locomotion modes- such as transitioning from level walking to stair ascent. These transitions can be accomplished by training an algorithm to recognize the patterns of mechanical and/or myoelectric signals an amputee generates during and between different locomotion modes. While low error rates can be achieved with this method, it typically requires a substantial amount of training data to be gathered. To alleviate this burden, this study investigated training a user-independent classifier from a pool of lower limb amputees performing level walking, ramps and stairs on a powered prosthesis and tested generalization of the classifier to a novel subject. The effect of using the amputee's EMG signals in combination with the mechanical sensors on the leg was also evaluated for this user-independent classifier. Generalization was poor to a novel subject- 48% overall recognition rate with EMG and 62% without (mechanical sensors only). However, an important system improvement could be made by including a few level walking trials of the novel subject (only a few minutes of data collection) in the training data, the overall recognition rate improved to 86% with EMG and 83% without.