The generation circulation method to generalized reed-muller coefficients over GF(3)

Chol-U Lee, G. Byun, Bu-Sik Shin, Jae-Hwan Sim, Heung-Soo Kim
{"title":"The generation circulation method to generalized reed-muller coefficients over GF(3)","authors":"Chol-U Lee, G. Byun, Bu-Sik Shin, Jae-Hwan Sim, Heung-Soo Kim","doi":"10.1109/ISMVL.2003.1201383","DOIUrl":null,"url":null,"abstract":"This paper propose the circulation method to generate GRM coefficient over GF(3). The general method to derive GRM coefficients are obtain RM expansion for the function and expand it for the polarities. The general method has many operations when the number of the variable is increased. Proposed method of this paper simplifies the generation process and reduces a number of operations compare to parallel type because of the cyclic property of polarity. To verify propriety of this method, previous proposed paper is compared in the number of operations.","PeriodicalId":434515,"journal":{"name":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Symposium on Multiple-Valued Logic, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2003.1201383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper propose the circulation method to generate GRM coefficient over GF(3). The general method to derive GRM coefficients are obtain RM expansion for the function and expand it for the polarities. The general method has many operations when the number of the variable is increased. Proposed method of this paper simplifies the generation process and reduces a number of operations compare to parallel type because of the cyclic property of polarity. To verify propriety of this method, previous proposed paper is compared in the number of operations.
GF(3)上广义reed-muller系数的生成循环法
本文提出了循环法生成GF(3)上的GRM系数。推导GRM系数的一般方法是对函数进行RM展开式和对其极性进行展开式。当变量数量增加时,一般方法会有很多操作。由于极性的循环特性,本文所提出的方法与并联方法相比,简化了生成过程,减少了大量的运算。为了验证该方法的正确性,比较了前人提出的算法的运算次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信