Isolating Uncertainty of the Face Expression Recognition with the Meta-Learning Supervisor Neural Network

Stanislav Selitskiy, Nikolaos Christou, Natalya Selitskaya
{"title":"Isolating Uncertainty of the Face Expression Recognition with the Meta-Learning Supervisor Neural Network","authors":"Stanislav Selitskiy, Nikolaos Christou, Natalya Selitskaya","doi":"10.1145/3480433.3480447","DOIUrl":null,"url":null,"abstract":"We investigate whether the well-known poor performance of the head-on usage of the convolutional neural networks for the facial expression recognition task may be improved in terms of reducing the false positive and false negative errors. An uncertainty isolating technique is used that introduces an additional “unknown” class. A self-attention supervisor artificial neural network is used to “learn about learning” of the underlying convolutional neural networks, in particular, to learn patterns of the underlying neural network parameters that accompany wrong or correct verdicts. A novel data set containing artistic makeup and occlusions images is used to aggravate the problem of the training data not representing the test data distribution.","PeriodicalId":415865,"journal":{"name":"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"252 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3480433.3480447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate whether the well-known poor performance of the head-on usage of the convolutional neural networks for the facial expression recognition task may be improved in terms of reducing the false positive and false negative errors. An uncertainty isolating technique is used that introduces an additional “unknown” class. A self-attention supervisor artificial neural network is used to “learn about learning” of the underlying convolutional neural networks, in particular, to learn patterns of the underlying neural network parameters that accompany wrong or correct verdicts. A novel data set containing artistic makeup and occlusions images is used to aggravate the problem of the training data not representing the test data distribution.
基于元学习监督神经网络的人脸表情识别不确定性隔离
我们研究了卷积神经网络在面部表情识别任务中使用的众所周知的不良性能是否可以在减少假阳性和假阴性错误方面得到改善。使用不确定性隔离技术引入了额外的“未知”类。一个自注意监督人工神经网络被用来“学习关于底层卷积神经网络的学习”,特别是学习伴随错误或正确判决的底层神经网络参数的模式。为了解决训练数据与测试数据分布不一致的问题,提出了一种新的包含艺术化妆和遮挡图像的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信