Genetic dysfunction of the mitochondrial respiratory chain impairs proteasome activity

K. Berschneider, Laura S. Kremer, Alexandra Kukat, Jennifer Wettmarshausen, Christine von Törne, S. Hauck, A. Geerlof, Fabiana Perocci, A. Trifunovic, O. Eickelberg, H. Prokisch, S. Meiners
{"title":"Genetic dysfunction of the mitochondrial respiratory chain impairs proteasome activity","authors":"K. Berschneider, Laura S. Kremer, Alexandra Kukat, Jennifer Wettmarshausen, Christine von Törne, S. Hauck, A. Geerlof, Fabiana Perocci, A. Trifunovic, O. Eickelberg, H. Prokisch, S. Meiners","doi":"10.18143/JWMS_V2I2_1934","DOIUrl":null,"url":null,"abstract":"Background: Mitochondria are the central energy producers and signaling platforms of the cell. Recent evidence links mitochondrial function to the main protein degradation machinery of the cell – the ubiquitin proteasome system. Pharmacological inhibition of mitochondrial respiratory chain results in reduced ATP production and excessive formation of reactive oxygen species (ROS) which both impair proteasome function [1]. Objective: We here analyzed the ROS-independent effect of impaired oxidative phosphorylation on proteasome function. Methodology and results: We used embryonic fibroblast from mutator mice that accumulate mutations in mitochondrial DNA resulting in loss of mitochondrial respiration [2] as well as human skin fibroblasts from patients with mitochondrial complex I mutations and comprehensively analyzed expression and activity of cellular proteasome complexes. Mutations in the mitochondrial DNA caused respiratory chain dysfunction and resulted in diminished assembly and activity of 26S and PA28γ-associated proteasome complexes [3] in mutator cells. Dampening of the proteasome activity was independent of excessive ROS production and ATP supply and made them less sensitive towards proteasome inhibition. Conclusion: Disturbed proteasomal function may represent a confounding factor for progression of severe hereditary mitochondrial respiratory chain disorders.","PeriodicalId":266249,"journal":{"name":"Journal of World Mitochondria Society","volume":"209 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of World Mitochondria Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18143/JWMS_V2I2_1934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Mitochondria are the central energy producers and signaling platforms of the cell. Recent evidence links mitochondrial function to the main protein degradation machinery of the cell – the ubiquitin proteasome system. Pharmacological inhibition of mitochondrial respiratory chain results in reduced ATP production and excessive formation of reactive oxygen species (ROS) which both impair proteasome function [1]. Objective: We here analyzed the ROS-independent effect of impaired oxidative phosphorylation on proteasome function. Methodology and results: We used embryonic fibroblast from mutator mice that accumulate mutations in mitochondrial DNA resulting in loss of mitochondrial respiration [2] as well as human skin fibroblasts from patients with mitochondrial complex I mutations and comprehensively analyzed expression and activity of cellular proteasome complexes. Mutations in the mitochondrial DNA caused respiratory chain dysfunction and resulted in diminished assembly and activity of 26S and PA28γ-associated proteasome complexes [3] in mutator cells. Dampening of the proteasome activity was independent of excessive ROS production and ATP supply and made them less sensitive towards proteasome inhibition. Conclusion: Disturbed proteasomal function may represent a confounding factor for progression of severe hereditary mitochondrial respiratory chain disorders.
线粒体呼吸链的遗传功能障碍损害蛋白酶体活性
背景:线粒体是细胞的中心能量生产者和信号平台。最近的证据将线粒体功能与细胞的主要蛋白质降解机制-泛素蛋白酶体系统联系起来。药物抑制线粒体呼吸链导致ATP的产生减少和活性氧(ROS)的过度形成,从而损害蛋白酶体的功能[1]。目的:分析氧化磷酸化受损对蛋白酶体功能的非ros依赖性影响。方法和结果:我们使用了线粒体DNA积累突变导致线粒体呼吸丧失的突变小鼠的胚胎成纤维细胞[2],以及线粒体复合物I突变患者的人类皮肤成纤维细胞,综合分析了细胞蛋白酶体复合物的表达和活性。线粒体DNA突变引起呼吸链功能障碍,导致突变细胞中26S和pa28 γ相关蛋白酶体复合物的组装和活性降低[3]。蛋白酶体活性的抑制与过量的ROS产生和ATP供应无关,使它们对蛋白酶体抑制的敏感性降低。结论:蛋白酶体功能紊乱可能是严重遗传性线粒体呼吸链疾病进展的一个混杂因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信