Examining Subject-Dependent and Subject-Independent Human Affect Inference from Limited Video Data

R. Parameshwara, Ibrahim Radwan, Subramanian Ramanathan, Roland Goecke
{"title":"Examining Subject-Dependent and Subject-Independent Human Affect Inference from Limited Video Data","authors":"R. Parameshwara, Ibrahim Radwan, Subramanian Ramanathan, Roland Goecke","doi":"10.1109/FG57933.2023.10042798","DOIUrl":null,"url":null,"abstract":"Continuous human affect estimation from video data entails modelling the dynamic emotional state from a sequence of facial images. Though multiple affective video databases exist, they are limited in terms of data and dy-namic annotations, as assigning continuous affective labels to video data is subjective, onerous and tedious. While studies have established the existence of signature facial expressions corresponding to the basic categorical emotions, individual differences in emoting facial expressions nevertheless exist; factoring out these idiosyncrasies is critical for effective emotion inference. This work explores continuous human affect recognition using AFEW-VA, an ‘in-the-wild’ video dataset with limited data, employing subject-independent (SI) and subject-dependent (SD) settings. The SI setting involves the use of training and test sets with mutually exclusive subjects, while training and test samples corresponding to the same subject can occur in the SD setting. A novel, dynamically-weighted loss function is employed with a Convolutional Neural Network (CNN)-Long Short- Term Memory (LSTM) architecture to optimise dynamic affect prediction. Superior prediction is achieved in the SD setting, as compared to the SI counterpart.","PeriodicalId":318766,"journal":{"name":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FG57933.2023.10042798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Continuous human affect estimation from video data entails modelling the dynamic emotional state from a sequence of facial images. Though multiple affective video databases exist, they are limited in terms of data and dy-namic annotations, as assigning continuous affective labels to video data is subjective, onerous and tedious. While studies have established the existence of signature facial expressions corresponding to the basic categorical emotions, individual differences in emoting facial expressions nevertheless exist; factoring out these idiosyncrasies is critical for effective emotion inference. This work explores continuous human affect recognition using AFEW-VA, an ‘in-the-wild’ video dataset with limited data, employing subject-independent (SI) and subject-dependent (SD) settings. The SI setting involves the use of training and test sets with mutually exclusive subjects, while training and test samples corresponding to the same subject can occur in the SD setting. A novel, dynamically-weighted loss function is employed with a Convolutional Neural Network (CNN)-Long Short- Term Memory (LSTM) architecture to optimise dynamic affect prediction. Superior prediction is achieved in the SD setting, as compared to the SI counterpart.
从有限的视频数据检验主体依赖和主体独立的人类情感推断
从视频数据中进行持续的人类情感估计需要从一系列面部图像中对动态情绪状态进行建模。尽管存在多种情感视频数据库,但由于为视频数据分配连续的情感标签是主观的、繁重的和繁琐的,它们在数据和动态注释方面受到限制。虽然研究已经确定了与基本的分类情绪相对应的签名面部表情的存在,但表情面部表情的个体差异仍然存在;分解出这些特质对于有效的情感推理至关重要。这项工作探索了使用AFEW-VA的连续人类情感识别,AFEW-VA是一个具有有限数据的“野外”视频数据集,采用主题独立(SI)和主题依赖(SD)设置。SI设置涉及使用具有互斥主题的训练集和测试集,而对应于相同主题的训练和测试样本可以在SD设置中发生。将一种新颖的动态加权损失函数与卷积神经网络(CNN)长短期记忆(LSTM)结构结合,优化动态影响预测。与SI相比,在SD设置中可以实现更好的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信