Santiago Eduardo Pabón-Guerrero, Ricardo Benítez-Benítez, R. Sarria-Villa, J. A. Gallo-Corredor
{"title":"Using aqueous extract of Eucalyptus grandis to synthesize iron oxide nanoparticles","authors":"Santiago Eduardo Pabón-Guerrero, Ricardo Benítez-Benítez, R. Sarria-Villa, J. A. Gallo-Corredor","doi":"10.24294/can.v5i2.1691","DOIUrl":null,"url":null,"abstract":"This work presents the evaluation of iron oxide nanoparticles obtained from the aqueous extract of Eucalyptus grandis. Twenty-three experiments were carried out where the synthesis of nanoparticles was performed by using the aqueous extract together with salts of iron (II) chloride tetrahydrate and iron (III) chloride hexahydrate. A characterization was carried out by IR, TEM and BET, where bands were presented at 3,440.77, 1,559.26 and 445.31 cm−1, indicating the presence of iron oxide nanoparticles. A relatively high monodispersity was evidenced with particles around 9 nm. By means of BET analysis it was found to present a surface area of 131.897 m2/g. Obtaining nanoparticles by this green method presents yield values of 98%, with application in nanotechnology, biomedicine, environmental treatment, among others, making them highly versatile and their production cost is relatively low.","PeriodicalId":331072,"journal":{"name":"Characterization and Application of Nanomaterials","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Characterization and Application of Nanomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24294/can.v5i2.1691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents the evaluation of iron oxide nanoparticles obtained from the aqueous extract of Eucalyptus grandis. Twenty-three experiments were carried out where the synthesis of nanoparticles was performed by using the aqueous extract together with salts of iron (II) chloride tetrahydrate and iron (III) chloride hexahydrate. A characterization was carried out by IR, TEM and BET, where bands were presented at 3,440.77, 1,559.26 and 445.31 cm−1, indicating the presence of iron oxide nanoparticles. A relatively high monodispersity was evidenced with particles around 9 nm. By means of BET analysis it was found to present a surface area of 131.897 m2/g. Obtaining nanoparticles by this green method presents yield values of 98%, with application in nanotechnology, biomedicine, environmental treatment, among others, making them highly versatile and their production cost is relatively low.