Role Model of Search in Agents' Parameter-Space

O. Kazík, Roman Neruda
{"title":"Role Model of Search in Agents' Parameter-Space","authors":"O. Kazík, Roman Neruda","doi":"10.1109/ICMLA.2011.124","DOIUrl":null,"url":null,"abstract":"In this article we elaborate the formal model of roles in computational multi-agent systems (CMAS) in description logic. The CMAS model is enriched by a role-based model representing search (e.g. hill-climbing, genetic algorithms) in general search space. The choice of solution representation is important for successful and quick finding of the optimal solution. We apply the search model to optimization in the parameter space of data mining methods and employ it in a meta-learning scenario.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we elaborate the formal model of roles in computational multi-agent systems (CMAS) in description logic. The CMAS model is enriched by a role-based model representing search (e.g. hill-climbing, genetic algorithms) in general search space. The choice of solution representation is important for successful and quick finding of the optimal solution. We apply the search model to optimization in the parameter space of data mining methods and employ it in a meta-learning scenario.
agent参数空间中搜索的角色模型
本文阐述了描述逻辑中计算多智能体系统(CMAS)中角色的形式化模型。CMAS模型通过在一般搜索空间中表示搜索(例如爬坡、遗传算法)的基于角色的模型得到了丰富。解表示的选择对于快速、成功地找到最优解至关重要。我们将搜索模型应用于数据挖掘方法的参数空间优化,并将其应用于元学习场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信