M. H. Jespersen, D. E. Serup, M. H. Nielsen, M. H. Hannesbo, Robin J. Williams, K. Nielsen, J. Mikkelsen, M. Shen
{"title":"An indoor multipath-assisted single-anchor UWB localization method","authors":"M. H. Jespersen, D. E. Serup, M. H. Nielsen, M. H. Hannesbo, Robin J. Williams, K. Nielsen, J. Mikkelsen, M. Shen","doi":"10.1109/IEEE-IWS.2018.8400983","DOIUrl":null,"url":null,"abstract":"In this paper, an indoor Ultra Wide Band (U localization system relying on a single-anchor setup is prese Conventional UWB localization systems require at least i anchors for trilateration, which leads to high system complexity and cost. Hence new technologies, such as the Virtual An (VA) approach are emerging to achieve single-anchor localiza The VA concept models Multipath Components (MPCs individual distance measurements thus exploiting reflections the environment to aid the accuracy of the localization. Exi single-anchor approaches require a priori information of pre” tag positions to estimate the current tag position. The novelty of this paper is an initialization method that enables estimate tag position without the use of a priori position information. The proposed solution is validated using both simulations and measurements. Both simulations and measurements have shown positive results, which indicates that single-anchor location is feasible.","PeriodicalId":163165,"journal":{"name":"2018 IEEE MTT-S International Wireless Symposium (IWS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2018.8400983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, an indoor Ultra Wide Band (U localization system relying on a single-anchor setup is prese Conventional UWB localization systems require at least i anchors for trilateration, which leads to high system complexity and cost. Hence new technologies, such as the Virtual An (VA) approach are emerging to achieve single-anchor localiza The VA concept models Multipath Components (MPCs individual distance measurements thus exploiting reflections the environment to aid the accuracy of the localization. Exi single-anchor approaches require a priori information of pre” tag positions to estimate the current tag position. The novelty of this paper is an initialization method that enables estimate tag position without the use of a priori position information. The proposed solution is validated using both simulations and measurements. Both simulations and measurements have shown positive results, which indicates that single-anchor location is feasible.