On noisy source vector quantization via a subspace constrained mean shift algorithm

Y. A. Ghassabeh, T. Linder, G. Takahara
{"title":"On noisy source vector quantization via a subspace constrained mean shift algorithm","authors":"Y. A. Ghassabeh, T. Linder, G. Takahara","doi":"10.1109/QBSC.2012.6221361","DOIUrl":null,"url":null,"abstract":"The subspace constrained mean shift (SCMS) algorithm is an iterative method for finding an underlying manifold associated with an intrinsically low dimensional data set embedded in a high dimensional space. We investigate the application of the SCMS algorithm to the problem of noisy source vector quantization where the clean source needs to be estimated from its noisy observation before quantizing with an optimal vector quantizer. We demonstrate that an SCMS-based preprocessing step can be effective for sources that have intrinsically low dimensionality in situations where clean source samples are unavailable and the system design relies only on noisy source samples for training.","PeriodicalId":343966,"journal":{"name":"2012 26th Biennial Symposium on Communications (QBSC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 26th Biennial Symposium on Communications (QBSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QBSC.2012.6221361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The subspace constrained mean shift (SCMS) algorithm is an iterative method for finding an underlying manifold associated with an intrinsically low dimensional data set embedded in a high dimensional space. We investigate the application of the SCMS algorithm to the problem of noisy source vector quantization where the clean source needs to be estimated from its noisy observation before quantizing with an optimal vector quantizer. We demonstrate that an SCMS-based preprocessing step can be effective for sources that have intrinsically low dimensionality in situations where clean source samples are unavailable and the system design relies only on noisy source samples for training.
基于子空间约束均值移位算法的噪声源矢量量化研究
子空间约束平均移位(SCMS)算法是一种迭代方法,用于寻找与嵌入在高维空间中的本质低维数据集相关的底层流形。我们研究了SCMS算法在噪声源矢量量化问题中的应用,在使用最优矢量量化器量化之前,需要从噪声源的噪声观测中估计干净源。我们证明了基于scms的预处理步骤可以有效地处理本质上低维的源,在这种情况下,干净的源样本不可用,系统设计仅依赖于噪声源样本进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信