{"title":"Using Viable Systems Model and Big Data for Community Energy Systems","authors":"Kevin Joshi, K. Ramamritham","doi":"10.1109/SEST.2019.8849093","DOIUrl":null,"url":null,"abstract":"A solar PV-battery installation allows grid-connected electricity ‘prosumers’ to engage in peak shaving, load shifting, Demand Response programs, and other grid ancillary services through data-driven energy management. These value streams generate revenue for consumers while assisting utilities in managing the grid. Such cyber-physical systems provide impetus to create consumer-centric business models that can leverage ICT infrastructure and resulting data for deployment of energy storage devices. This can lead to the diverse use of a battery as energy storage in a community where consumers, utility, and an energy management platform or service provider act as stakeholders. However, operation, control, management, and protection of stakeholders' interest in such smart community deployment projects exhibit complex interlinkages that are both technical and administrative. Thus ensuring a sustainable and resilient community energy system (CES) requires 1) an adaptable cyber-physical system (CPS) for operational control of resources and 2) an institutional management structure to define roles and responsibilities of all the stakeholders. To this end, we present an organizational framework for a pooled battery resource sharing community of residences using the Viable Systems Model (VSM) approach. We also provide a control mechanism for sharing the pooled battery to demonstrate the application of big data and working of each system in VSM when subjected to changes in the operational environment. The proposed CES organizational framework and control mechanism based on VSM and big data respectively offer a distinct solution for technical and management complexity of a cooperative.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"427 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A solar PV-battery installation allows grid-connected electricity ‘prosumers’ to engage in peak shaving, load shifting, Demand Response programs, and other grid ancillary services through data-driven energy management. These value streams generate revenue for consumers while assisting utilities in managing the grid. Such cyber-physical systems provide impetus to create consumer-centric business models that can leverage ICT infrastructure and resulting data for deployment of energy storage devices. This can lead to the diverse use of a battery as energy storage in a community where consumers, utility, and an energy management platform or service provider act as stakeholders. However, operation, control, management, and protection of stakeholders' interest in such smart community deployment projects exhibit complex interlinkages that are both technical and administrative. Thus ensuring a sustainable and resilient community energy system (CES) requires 1) an adaptable cyber-physical system (CPS) for operational control of resources and 2) an institutional management structure to define roles and responsibilities of all the stakeholders. To this end, we present an organizational framework for a pooled battery resource sharing community of residences using the Viable Systems Model (VSM) approach. We also provide a control mechanism for sharing the pooled battery to demonstrate the application of big data and working of each system in VSM when subjected to changes in the operational environment. The proposed CES organizational framework and control mechanism based on VSM and big data respectively offer a distinct solution for technical and management complexity of a cooperative.