Integration of Low Level Linguistic Information for Clinical Document Semantic Tagging

Hyeju Jang, Yun Jin, Sung-Hyon Myaeng
{"title":"Integration of Low Level Linguistic Information for Clinical Document Semantic Tagging","authors":"Hyeju Jang, Yun Jin, Sung-Hyon Myaeng","doi":"10.1109/IRI.2006.252428","DOIUrl":null,"url":null,"abstract":"We propose a semantic tagger that provides high level concept information for phrases based on several kinds of low level information about words in clinical narrative texts. The semantic tagging, based on hidden Markov model (HMM), is performed on the text that has been tagged with unified medical language system (UMLS), part-of-speech (POS), and abbreviation tags. It reuses UMLS, POS, abbreviation, clue words, and numerical information to produce higher level concept information. Our unknown phrase guessing method for a robust tagger also uses the existing information calculated in the training data. In short, the semantic tagger gives more meaningful and abstract information by integrating different kinds of low-level information","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a semantic tagger that provides high level concept information for phrases based on several kinds of low level information about words in clinical narrative texts. The semantic tagging, based on hidden Markov model (HMM), is performed on the text that has been tagged with unified medical language system (UMLS), part-of-speech (POS), and abbreviation tags. It reuses UMLS, POS, abbreviation, clue words, and numerical information to produce higher level concept information. Our unknown phrase guessing method for a robust tagger also uses the existing information calculated in the training data. In short, the semantic tagger gives more meaningful and abstract information by integrating different kinds of low-level information
临床文献语义标注的低层次语言信息集成
我们提出了一种基于临床叙事文本中几种低层次词汇信息的语义标注器,为短语提供高层次的概念信息。基于隐马尔可夫模型(HMM)的语义标记是对使用统一医学语言系统(UMLS)、词性(POS)和缩写标记进行标记的文本执行的。它重用UMLS、POS、缩写、线索词和数字信息来生成更高级的概念信息。鲁棒标注器的未知短语猜测方法也使用了训练数据中计算的现有信息。简而言之,语义标注器通过整合不同类型的底层信息,提供更有意义和抽象的信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信