Path Orthogonal Matching Pursuit for k-Sparse Image Reconstruction

T. Emerson, T. Doster, C. Olson
{"title":"Path Orthogonal Matching Pursuit for k-Sparse Image Reconstruction","authors":"T. Emerson, T. Doster, C. Olson","doi":"10.23919/EUSIPCO.2018.8553497","DOIUrl":null,"url":null,"abstract":"We introduce a path-augmentation step to the standard orthogonal matching pursuit algorithm. Our augmentation may be applied to any algorithm that relies on the selection and sorting of high-correlation atoms during an analysis or identification phase by generating a “path” between the two highest-correlation atoms. Here we investigate two types of path: a linear combination (Euclidean geodesic) and a construction relying on an optimal transport map (2-Wasserstein geodesic). We test our extension by generating k-sparse reconstructions of faces using an eigen-face dictionary learned from a subset of the data. We show that our method achieves lower reconstruction error for fixed sparsity levels than either orthogonal matching pursuit or generalized orthogonal matching pursuit.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We introduce a path-augmentation step to the standard orthogonal matching pursuit algorithm. Our augmentation may be applied to any algorithm that relies on the selection and sorting of high-correlation atoms during an analysis or identification phase by generating a “path” between the two highest-correlation atoms. Here we investigate two types of path: a linear combination (Euclidean geodesic) and a construction relying on an optimal transport map (2-Wasserstein geodesic). We test our extension by generating k-sparse reconstructions of faces using an eigen-face dictionary learned from a subset of the data. We show that our method achieves lower reconstruction error for fixed sparsity levels than either orthogonal matching pursuit or generalized orthogonal matching pursuit.
k-稀疏图像重构的路径正交匹配追踪
我们在标准的正交匹配追踪算法中引入了一个路径增广步骤。我们的扩展可以应用于任何在分析或识别阶段依赖于高相关原子的选择和排序的算法,通过生成两个最高相关原子之间的“路径”。在这里,我们研究了两种类型的路径:线性组合(欧几里得测地线)和依赖于最优运输图的构造(2-Wasserstein测地线)。我们通过使用从数据子集中学习到的特征-面部字典生成人脸的k-稀疏重建来测试我们的扩展。结果表明,该方法在固定稀疏度下的重建误差比正交匹配追踪和广义正交匹配追踪都要小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信